M-site dependent terahertz intrinsic absorption in MXenes

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Infomat Pub Date : 2025-01-02 DOI:10.1002/inf2.12654
Yang Fei, Qiuxiang Wang, Feng Wang, Guozheng Zhang, Min Hu, Tianpeng Ding, Tao Zhao, Xu Xiao
{"title":"M-site dependent terahertz intrinsic absorption in MXenes","authors":"Yang Fei,&nbsp;Qiuxiang Wang,&nbsp;Feng Wang,&nbsp;Guozheng Zhang,&nbsp;Min Hu,&nbsp;Tianpeng Ding,&nbsp;Tao Zhao,&nbsp;Xu Xiao","doi":"10.1002/inf2.12654","DOIUrl":null,"url":null,"abstract":"<p>Ultrathin terahertz (THz) absorbing films are critical as building blocks for THz devices and systems. Although few-layer Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene assemblies have approached the terahertz (THz) intrinsic absorption limit, it remains important to explore the THz intrinsic absorbing properties of other MXenes, which may elucidate the mechanism of THz-matter interactions for the future guidance of material design. In this study, eight representative MXenes with different M-sites were systematically analyzed. Surprisingly, the Ti<sub>2</sub>CT<sub><i>x</i></sub> thin film with direct current (DC) conductivity 26 times lower than that of the Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> film possessed similar high THz absorbing properties. Due to the significantly lower electron concentration of Ti<sub>2</sub>CT<sub><i>x</i></sub> compared to that of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>, we concluded that the exceptional THz intrinsic absorption of Ti<sub>2</sub>CT<sub><i>x</i></sub> stemmed from its high terahertz electron mobility (<i>μ</i><sub>THz</sub>), which was attributed to its low electron effective mass (m*). Because the THz intrinsic absorption was determined by THz conductivity, which was proportional to the ratio of electron density (<i>n</i>) to electron effective mass (m*), we proposed that optimizing <i>n</i>/m* was crucial for achieving high THz intrinsic absorption in MXenes. This study not only explored the underlying THz-matter interaction mechanism in MXenes but also provided guidance for designing high THz absorption materials.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 4","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12654","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12654","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrathin terahertz (THz) absorbing films are critical as building blocks for THz devices and systems. Although few-layer Ti3C2Tx MXene assemblies have approached the terahertz (THz) intrinsic absorption limit, it remains important to explore the THz intrinsic absorbing properties of other MXenes, which may elucidate the mechanism of THz-matter interactions for the future guidance of material design. In this study, eight representative MXenes with different M-sites were systematically analyzed. Surprisingly, the Ti2CTx thin film with direct current (DC) conductivity 26 times lower than that of the Ti3C2Tx film possessed similar high THz absorbing properties. Due to the significantly lower electron concentration of Ti2CTx compared to that of Ti3C2Tx, we concluded that the exceptional THz intrinsic absorption of Ti2CTx stemmed from its high terahertz electron mobility (μTHz), which was attributed to its low electron effective mass (m*). Because the THz intrinsic absorption was determined by THz conductivity, which was proportional to the ratio of electron density (n) to electron effective mass (m*), we proposed that optimizing n/m* was crucial for achieving high THz intrinsic absorption in MXenes. This study not only explored the underlying THz-matter interaction mechanism in MXenes but also provided guidance for designing high THz absorption materials.

Abstract Image

MXenes中依赖m位的太赫兹本征吸收
超薄太赫兹(THz)吸收膜是太赫兹器件和系统的关键组成部分。虽然很少有层Ti3C2Tx MXene组件接近太赫兹(THz)本征吸收极限,但探索其他MXene的太赫兹本征吸收特性仍然很重要,这可能有助于阐明太赫兹-物质相互作用的机制,为未来的材料设计提供指导。本研究系统分析了8个具有不同m位点的代表性MXenes。令人惊讶的是,Ti2CTx薄膜的直流电导率比Ti3C2Tx薄膜低26倍,但却具有相似的高太赫兹吸收性能。由于Ti2CTx的电子浓度明显低于Ti3C2Tx,我们得出结论,Ti2CTx的特殊太赫兹本征吸收源于其高太赫兹电子迁移率(μTHz),这归因于其低电子有效质量(m*)。由于太赫兹本征吸收是由太赫兹电导率决定的,而太赫兹电导率与电子密度(n)与电子有效质量(m*)之比成正比,因此我们提出优化n/m*对于实现MXenes的高太赫兹本征吸收至关重要。该研究不仅探索了MXenes中太赫兹-物质相互作用的潜在机制,而且为设计高太赫兹吸收材料提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信