Mohanad Elhoushy, Belal A. Zalam, Amged Sayed, Essam Nabil
{"title":"Automated blood glucose regulation for nonlinear model of type-1 diabetic patient under uncertainties: GWOCS type-2 fuzzy approach","authors":"Mohanad Elhoushy, Belal A. Zalam, Amged Sayed, Essam Nabil","doi":"10.1007/s13534-023-00318-3","DOIUrl":"https://doi.org/10.1007/s13534-023-00318-3","url":null,"abstract":"Abstract Regulating blood glucose level (BGL) for type-1 diabetic patient (T1DP) accurately is very important issue, an uncontrolled BGL outside the standard safe range between 70 and 180 mg/dl results in dire consequences for health and can significantly increase the chance of death. So the purpose of this study is to design an optimized controller that infuses appropriate amounts of exogenous insulin into the blood stream of T1DP proportional to the amount of obtained glucose from food. The nonlinear extended Bergman minimal model is used to present glucose-insulin physiological system, an interval type-2 fuzzy logic controller (IT2FLC) is utilized to infuse the proper amount of exogenous insulin. Superiority of IT2FLC in minimizing the effect of uncertainties in the system depends primarily on the best choice of footprint of uncertainty (FOU) of IT2FLC. So a comparison includes four different optimization methods for tuning FOU including hybrid grey wolf optimizer-cuckoo search (GWOCS) and fuzzy logic controller (FLC) method is constructed to select the best controller approach. The effectiveness of the proposed controller was evaluated under six different scenarios of T1DP using Matlab/Simulink platform. A 24-h scenario close to real for 100 virtual T1DPs subjected to parametric uncertainty, uncertain meal disturbance and random initial condition showed that IT2FLC accurately regulate BGL for all T1DPs within the standard safe range. The results indicated that IT2FLC using GWOCS can prevent side effect of treatment with blood-sugar-lowering medication. Also stability analysis for the system indicated that the system operates within the stability region of nonlinear system.","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135407586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Robotic-assisted unicompartmental knee arthroplasty: historical perspectives and current innovations.","authors":"Sung Eun Kim, Hyuk-Soo Han","doi":"10.1007/s13534-023-00323-6","DOIUrl":"10.1007/s13534-023-00323-6","url":null,"abstract":"<p><p>Robotic assisted unicompartmental knee arthroplasty (RAUKA) has emerged as a successful approach for optimizing implant positioning accuracy, minimizing soft tissue injury, and improving patient-reported outcomes. The application of RAUKA is expected to increase because of its advantages over conventional unicompartmental knee arthroplasty. This review article provides an overview of RAUKA, encompassing the historical development of the procedure, the features of the robotic arm and navigation systems, and the characteristics of contemporary RAUKA. The article also includes a comparison between conventional unicompartmental arthroplasty and RAUKA, as well as a discussion of current challenges and future advancements in the field of RAUKA.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"13 4","pages":"543-552"},"PeriodicalIF":3.2,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590358/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49693091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Funding of research & innovation in the field of medical technologies and biomedical engineering over the different European framework programmes","authors":"B. W. Rainer","doi":"10.1007/s13534-023-00320-9","DOIUrl":"https://doi.org/10.1007/s13534-023-00320-9","url":null,"abstract":"","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"2022 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135536425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samiappan Dhanalakshmi, Ramesh Sai Maanasaa, Ramesh Sai Maalikaa, Ramalingam Senthil
{"title":"A review of emergent intelligent systems for the detection of Parkinson's disease.","authors":"Samiappan Dhanalakshmi, Ramesh Sai Maanasaa, Ramesh Sai Maalikaa, Ramalingam Senthil","doi":"10.1007/s13534-023-00319-2","DOIUrl":"10.1007/s13534-023-00319-2","url":null,"abstract":"<p><p>Parkinson's disease (PD) is a neurodegenerative disorder affecting people worldwide. The PD symptoms are divided into motor and non-motor symptoms. Detection of PD is very crucial and essential. Such challenges can be overcome by applying artificial intelligence to diagnose PD. Many studies have also proposed the implementation of computer-aided diagnosis for the detection of PD. This systematic review comprehensively analyzed all appropriate algorithms for detecting and assessing PD based on the literature from 2012 to 2023 which are conducted as per PRISMA model. This review focused on motor symptoms, namely handwriting dynamics, voice impairments and gait, multimodal features, and brain observation using single photon emission computed tomography, magnetic resonance and electroencephalogram signals. The significant challenges are critically analyzed, and appropriate recommendations are provided. The critical discussion of this review article can be helpful in today's PD community in such a way that it allows clinicians to provide proper treatment and timely medication.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"13 4","pages":"591-612"},"PeriodicalIF":3.2,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590348/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49693087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancement of a RGBW-LED pen for diaphanoscopic illumination with adjustable color and intensity with tests on ex-vivo porcine eyes in terms of retinal risk and correlated color temperature","authors":"Nicole Fehler, David Schneider, Martin Hessling","doi":"10.1007/s13534-023-00317-4","DOIUrl":"https://doi.org/10.1007/s13534-023-00317-4","url":null,"abstract":"Abstract Diaphanoscopic illumination has the disadvantage that the intraocular spectrum is red-shifted due to transmission properties of the eyewall. This red-shift should be counteracted as well as the retinal risk should be reduced with adjusting the spectral distribution of the illumination light. Likewise, the illumination spectrum has to be adapted to the eye color of the patient. With the further development of a red, green, blue and white light-emitting diode (RGBW-LED) diaphanoscopy pen, the intensities of each color can be varied. The functionality of the LED pen is tested on ex-vivo porcine eyes. By measuring the transmission of the sclera and choroidea, the photochemical and thermal retinal hazard and the maximum exposure time are determined according to the standard DIN EN ISO 15004-2:2007. With this RGBW-LED pen the intraocular space can be illuminated clearly of up to 1.5 h without potential retinal damage according to DIN EN ISO 15004:2-2007. By adjusting the illumination spectrum the red-shift can be compensated and retinal risk can be reduced. By varying the LED intensities, the correlated color temperature in the eye can also be varied from cold white to warm white appearance as comfortable to the ophthalmologist. Additionally, a simple adjustment of the illumination to the eye color of the patient is possible. Using this RGBW-LED pen, the ophthalmologist can set the desired intraocular color appearance, which he prefers for special applications. He could also adjust the illumination to the eye color as this would reduce retinal hazard.","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"136 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135395821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yoelvis Moreno-Alcayde, V. Javier Traver, Luis A. Leiva
{"title":"Sneaky emotions: impact of data partitions in affective computing experiments with brain-computer interfacing","authors":"Yoelvis Moreno-Alcayde, V. Javier Traver, Luis A. Leiva","doi":"10.1007/s13534-023-00316-5","DOIUrl":"https://doi.org/10.1007/s13534-023-00316-5","url":null,"abstract":"Abstract Brain-Computer Interfacing (BCI) has shown promise in Machine Learning (ML) for emotion recognition. Unfortunately, how data are partitioned in training/test splits is often overlooked, which makes it difficult to attribute research findings to actual modeling improvements or to partitioning issues. We introduce the “data transfer rate” construct (i.e., how much data of the test samples are seen during training) and use it to examine data partitioning effects under several conditions. As a use case, we consider emotion recognition in videos using electroencephalogram (EEG) signals. Three data splits are considered, each representing a relevant BCI task: subject-independent (affective decoding), video-independent (affective annotation), and time-based (feature extraction). Model performance may change significantly (ranging e.g. from 50% to 90%) depending on how data is partitioned, in classification accuracy. This was evidenced in all experimental conditions tested. Our results show that (1) for affective decoding, it is hard to achieve performance above the baseline case (random classification) unless some data of the test subjects are considered in the training partition; (2) for affective annotation, having data from the same subject in training and test partitions, even though they correspond to different videos, also increases performance; and (3) later signal segments are generally more discriminative, but it is the number of segments (data points) what matters the most. Our findings not only have implications in how brain data are managed, but also in how experimental conditions and results are reported.","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"365 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135980914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhidong Meng, Andrea Iaboni, Bing Ye, Kristine Newman, Alex Mihailidis, Zhihong Deng, Shehroz S. Khan
{"title":"Undersampling and cumulative class re-decision methods to improve detection of agitation in people with dementia","authors":"Zhidong Meng, Andrea Iaboni, Bing Ye, Kristine Newman, Alex Mihailidis, Zhihong Deng, Shehroz S. Khan","doi":"10.1007/s13534-023-00313-8","DOIUrl":"https://doi.org/10.1007/s13534-023-00313-8","url":null,"abstract":"","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136349161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fábio Mendonça, Sheikh Shanawaz Mostafa, Fernando Morgado-Dias, Antonio G Ravelo-García, Ivana Rosenzweig
{"title":"Towards automatic EEG cyclic alternating pattern analysis: a systematic review.","authors":"Fábio Mendonça, Sheikh Shanawaz Mostafa, Fernando Morgado-Dias, Antonio G Ravelo-García, Ivana Rosenzweig","doi":"10.1007/s13534-023-00303-w","DOIUrl":"10.1007/s13534-023-00303-w","url":null,"abstract":"<p><p>This study conducted a systematic review to determine the feasibility of automatic Cyclic Alternating Pattern (CAP) analysis. Specifically, this review followed the 2020 Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines to address the formulated research question: is automatic CAP analysis viable for clinical application? From the identified 1,280 articles, the review included 35 studies that proposed various methods for examining CAP, including the classification of A phase, their subtypes, or the CAP cycles. Three main trends were observed over time regarding A phase classification, starting with mathematical models or features classified with a tuned threshold, followed by using conventional machine learning models and, recently, deep learning models. Regarding the CAP cycle detection, it was observed that most studies employed a finite state machine to implement the CAP scoring rules, which depended on an initial A phase classifier, stressing the importance of developing suitable A phase detection models. The assessment of A-phase subtypes has proven challenging due to various approaches used in the state-of-the-art for their detection, ranging from multiclass models to creating a model for each subtype. The review provided a positive answer to the main research question, concluding that automatic CAP analysis can be reliably performed. The main recommended research agenda involves validating the proposed methodologies on larger datasets, including more subjects with sleep-related disorders, and providing the source code for independent confirmation.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"13 3","pages":"273-291"},"PeriodicalIF":4.6,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382419/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9912014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mi Lu, Lisa Brenzinger, Lisa Rosenblum, Matthew Salanitro, Ingo Fietze, Martin Glos, Giuseppe Fico, Thomas Penzel
{"title":"Comparative study of the SleepImage ring device and polysomnography for diagnosing obstructive sleep apnea.","authors":"Mi Lu, Lisa Brenzinger, Lisa Rosenblum, Matthew Salanitro, Ingo Fietze, Martin Glos, Giuseppe Fico, Thomas Penzel","doi":"10.1007/s13534-023-00304-9","DOIUrl":"10.1007/s13534-023-00304-9","url":null,"abstract":"<p><p><i>Purpose</i> We aim to evaluate the diagnostic performance of the SleepImage Ring device in identifying obstructive sleep apnea (OSA) across different severity in comparison to standard polysomnography (PSG). <i>Methods</i> Thirty-nine patients (mean age, 56.8 ± 15.0 years; 29 [74.3%] males) were measured with the SleepImage Ring and PSG study simultaneously in order to evaluate the diagnostic performance of the SleepImage device for diagnosing OSA. Variables such as sensitivity, specificity, positive and negative likelihood ratio, positive and negative predictive value, and accuracy were calculated with PSG-AHI thresholds of 5, 15, and 30 events/h. Receiver operating characteristic curves were also built according to the above PSG-AHI thresholds. In addition, we analyzed the correlation and agreement between the apnea-hypopnea index (AHI) obtained from the two measurement devices. <i>Results</i> There was a strong correlation (r = 0.89, <i>P</i> < 0.001 and high agreement in AHI between the SleepImage Ring and standard PSG. Also, the SleepImage Ring showed reliable diagnostic capability, with areas under the receiver operating characteristic curve of 1.00 (95% CI, 0.91, 1.00), 0.90 (95% CI, 0.77, 0.97), and 0.98 (95% CI, 0.88, 1.000) for corresponding PSG-AHI of 5, 15 and 30 events/h, respectively. <i>Conclusion</i> The SleepImage Ring could be a clinically reliable and cheaper alternative to the gold standard PSG when aiming to diagnose OSA in adults.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13534-023-00304-9.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"13 3","pages":"343-352"},"PeriodicalIF":3.2,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382437/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9912015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maksym Gaiduk, Ángel Serrano Alarcón, Ralf Seepold, Natividad Martínez Madrid
{"title":"Current status and prospects of automatic sleep stages scoring: Review.","authors":"Maksym Gaiduk, Ángel Serrano Alarcón, Ralf Seepold, Natividad Martínez Madrid","doi":"10.1007/s13534-023-00299-3","DOIUrl":"10.1007/s13534-023-00299-3","url":null,"abstract":"<p><p>The scoring of sleep stages is one of the essential tasks in sleep analysis. Since a manual procedure requires considerable human and financial resources, and incorporates some subjectivity, an automated approach could result in several advantages. There have been many developments in this area, and in order to provide a comprehensive overview, it is essential to review relevant recent works and summarise the characteristics of the approaches, which is the main aim of this article. To achieve it, we examined articles published between 2018 and 2022 that dealt with the automated scoring of sleep stages. In the final selection for in-depth analysis, 125 articles were included after reviewing a total of 515 publications. The results revealed that automatic scoring demonstrates good quality (with Cohen's kappa up to over 0.80 and accuracy up to over 90%) in analysing EEG/EEG + EOG + EMG signals. At the same time, it should be noted that there has been no breakthrough in the quality of results using these signals in recent years. Systems involving other signals that could potentially be acquired more conveniently for the user (e.g. respiratory, cardiac or movement signals) remain more challenging in the implementation with a high level of reliability but have considerable innovation capability. In general, automatic sleep stage scoring has excellent potential to assist medical professionals while providing an objective assessment.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"13 3","pages":"247-272"},"PeriodicalIF":4.6,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382458/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9909519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}