股骨颈骨折愈合后股骨颈系统切除对生物力学稳定性及螺钉脱落风险的影响。

IF 2.8 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Biomedical Engineering Letters Pub Date : 2024-12-27 eCollection Date: 2025-03-01 DOI:10.1007/s13534-024-00452-6
Se-Won Lee, Jeongah Pak, Dohyung Lim
{"title":"股骨颈骨折愈合后股骨颈系统切除对生物力学稳定性及螺钉脱落风险的影响。","authors":"Se-Won Lee, Jeongah Pak, Dohyung Lim","doi":"10.1007/s13534-024-00452-6","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to determine whether the removal of the femoral neck system (FNS) after bony union affects the biomechanical stability of the femur. Considering the technical challenges and potential complications, including screw stripping reported in recent studies, the study explores whether its removal impacts stress distribution within the femur and increases the risk of complications, such as screw stripping. The femurs were grouped into Intact, Group U (healed fractures with FNS in place), and Group R (healed fractures with FNS removed). Subgroup analysis was performed using Pauwels' classification for fractures at 30, 50, and 70 degrees. Finite element analysis (FEA) was used to model and evaluate the biomechanical behavior. Material properties for the models were derived from the literature. No significant difference in biomechanical stability was observed between Group U and Group R across the fracture angles tested, indicating that removal of FNS does not compromise the structural integrity of the femur. However, the risk of screw stripping during removal requires consideration. Removing the femoral neck system (FNS) after fracture healing preserves the femur's biomechanical stability, regardless of fracture angle. However, increased stress at the distal locking screw suggests caution to avoid complications such as screw stripping.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"15 2","pages":"349-355"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871177/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of femoral neck system removal after femoral neck fracture healing on biomechanical stability and screw stripping risk.\",\"authors\":\"Se-Won Lee, Jeongah Pak, Dohyung Lim\",\"doi\":\"10.1007/s13534-024-00452-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to determine whether the removal of the femoral neck system (FNS) after bony union affects the biomechanical stability of the femur. Considering the technical challenges and potential complications, including screw stripping reported in recent studies, the study explores whether its removal impacts stress distribution within the femur and increases the risk of complications, such as screw stripping. The femurs were grouped into Intact, Group U (healed fractures with FNS in place), and Group R (healed fractures with FNS removed). Subgroup analysis was performed using Pauwels' classification for fractures at 30, 50, and 70 degrees. Finite element analysis (FEA) was used to model and evaluate the biomechanical behavior. Material properties for the models were derived from the literature. No significant difference in biomechanical stability was observed between Group U and Group R across the fracture angles tested, indicating that removal of FNS does not compromise the structural integrity of the femur. However, the risk of screw stripping during removal requires consideration. Removing the femoral neck system (FNS) after fracture healing preserves the femur's biomechanical stability, regardless of fracture angle. However, increased stress at the distal locking screw suggests caution to avoid complications such as screw stripping.</p>\",\"PeriodicalId\":46898,\"journal\":{\"name\":\"Biomedical Engineering Letters\",\"volume\":\"15 2\",\"pages\":\"349-355\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871177/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13534-024-00452-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-024-00452-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在确定骨愈合后股骨颈系统(FNS)的切除是否会影响股骨的生物力学稳定性。考虑到技术挑战和潜在的并发症,包括近期研究中报道的螺钉剥离,本研究探讨了其移除是否会影响股骨内的应力分布,并增加并发症的风险,如螺钉剥离。将股骨分为完整组、U组(已愈合骨折并植入FNS)和R组(已愈合骨折并移除FNS)。采用Pauwels分类对30度、50度和70度骨折进行亚组分析。采用有限元分析(FEA)对生物力学行为进行建模和评价。模型的材料特性来源于文献。在测试的骨折角度上,U组和R组的生物力学稳定性没有显著差异,这表明去除FNS不会损害股骨的结构完整性。但是,在拆卸过程中需要考虑螺钉剥离的风险。骨折愈合后切除股骨颈系统(FNS)可保持股骨的生物力学稳定性,无论骨折角度如何。然而,远端锁定螺钉的应力增加提示要小心避免并发症,如螺钉剥离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of femoral neck system removal after femoral neck fracture healing on biomechanical stability and screw stripping risk.

This study aims to determine whether the removal of the femoral neck system (FNS) after bony union affects the biomechanical stability of the femur. Considering the technical challenges and potential complications, including screw stripping reported in recent studies, the study explores whether its removal impacts stress distribution within the femur and increases the risk of complications, such as screw stripping. The femurs were grouped into Intact, Group U (healed fractures with FNS in place), and Group R (healed fractures with FNS removed). Subgroup analysis was performed using Pauwels' classification for fractures at 30, 50, and 70 degrees. Finite element analysis (FEA) was used to model and evaluate the biomechanical behavior. Material properties for the models were derived from the literature. No significant difference in biomechanical stability was observed between Group U and Group R across the fracture angles tested, indicating that removal of FNS does not compromise the structural integrity of the femur. However, the risk of screw stripping during removal requires consideration. Removing the femoral neck system (FNS) after fracture healing preserves the femur's biomechanical stability, regardless of fracture angle. However, increased stress at the distal locking screw suggests caution to avoid complications such as screw stripping.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Engineering Letters
Biomedical Engineering Letters ENGINEERING, BIOMEDICAL-
CiteScore
6.80
自引率
0.00%
发文量
34
期刊介绍: Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信