{"title":"Specialized ECG data augmentation method: leveraging precordial lead positional variability.","authors":"Jeonghwa Lim, Yeha Lee, Wonseuk Jang, Sunghoon Joo","doi":"10.1007/s13534-024-00455-3","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning has demonstrated remarkable performance across various domains. One of the techniques contributing to this success is data augmentation. The essence of data augmentation lies in synthesizing data while preserving accurate labels. In this research, we introduce a data augmentation technique optimized for electrocardiogram (ECG) data by focusing on the unique angles between precordial leads in 12-lead ECG, considering situations that may occur in a clinical environment. Subsequently, we utilize the proposed data augmentation technique to train a deep learning model for diagnosing atrial fibrillation or atrial flutter, generalized supraventricular tachycardia, first-degree atrioventricular block, left bundle branch block and myocardial infarction from ECG signals, and evaluate its performance to validate the effectiveness of the proposed method. Compared to other data augmentation methods, our approach demonstrated improved performance across various datasets and most tasks, thereby showcasing its potential to enhance diagnostic accuracy. Additionally, our method is simple to implement, offering a gain in total training time compared to other augmentation methods. This study holds the potential to positively advance further development in the fields of bio-signal processing and deep learning technology, addressing the issue of the lack of optimized data augmentation techniques applicable to ECG data in the future.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13534-024-00455-3.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"15 2","pages":"377-388"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871216/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-024-00455-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning has demonstrated remarkable performance across various domains. One of the techniques contributing to this success is data augmentation. The essence of data augmentation lies in synthesizing data while preserving accurate labels. In this research, we introduce a data augmentation technique optimized for electrocardiogram (ECG) data by focusing on the unique angles between precordial leads in 12-lead ECG, considering situations that may occur in a clinical environment. Subsequently, we utilize the proposed data augmentation technique to train a deep learning model for diagnosing atrial fibrillation or atrial flutter, generalized supraventricular tachycardia, first-degree atrioventricular block, left bundle branch block and myocardial infarction from ECG signals, and evaluate its performance to validate the effectiveness of the proposed method. Compared to other data augmentation methods, our approach demonstrated improved performance across various datasets and most tasks, thereby showcasing its potential to enhance diagnostic accuracy. Additionally, our method is simple to implement, offering a gain in total training time compared to other augmentation methods. This study holds the potential to positively advance further development in the fields of bio-signal processing and deep learning technology, addressing the issue of the lack of optimized data augmentation techniques applicable to ECG data in the future.
Supplementary information: The online version contains supplementary material available at 10.1007/s13534-024-00455-3.
期刊介绍:
Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.