Advanced optimized nonlinear control strategies for prosthetic knee joints.

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Biomedical Engineering Letters Pub Date : 2024-12-12 eCollection Date: 2025-03-01 DOI:10.1007/s13534-024-00447-3
Atif Rehman, Rimsha Ghias, Syed Hassan Ahmed, Iftikhar Ahmad
{"title":"Advanced optimized nonlinear control strategies for prosthetic knee joints.","authors":"Atif Rehman, Rimsha Ghias, Syed Hassan Ahmed, Iftikhar Ahmad","doi":"10.1007/s13534-024-00447-3","DOIUrl":null,"url":null,"abstract":"<p><p>Prosthetic knee joints are at the forefront of medical innovation, serving as crucial tools in restoring mobility and enhancing the quality of life for individuals grappling with knee-related ailments like osteoarthritis and injuries. By faithfully replicating the intricate biomechanics of the natural knee, these devices empower recipients to regain lost physical capabilities and lead active, fulfilling lives. This paper presents a novel methodology employing advanced control techniques, including sliding mode control (SMC) and super-twisting sliding mode control (STSMC), to explore lower limb dynamics and effectively manage a two-part knee joint replacement. Through meticulous parameter optimization using a genetic algorithm (GA), guided by the integral time absolute error as the optimization objective, the controllers are finely tuned to maximize performance and responsiveness in real-world scenarios. The stability of the proposed controllers is thoroughly validated using mathematical analysis based on Lyapunov stability criteria. This ensures they perform robustly and can withstand disturbances. Comprehensive performance evaluations conducted via MATLAB/Simulink simulations offer valuable insights into the comparative efficacy of different control strategies under varying conditions, facilitating informed decision-making and refinement of prosthetic knee design. Real-time validation of the proposed methodology is achieved through a hardware-in-loop experimental setup featuring the advanced C2000 Delfino MCU F28379D Launchpad.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"15 2","pages":"291-300"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871221/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-024-00447-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Prosthetic knee joints are at the forefront of medical innovation, serving as crucial tools in restoring mobility and enhancing the quality of life for individuals grappling with knee-related ailments like osteoarthritis and injuries. By faithfully replicating the intricate biomechanics of the natural knee, these devices empower recipients to regain lost physical capabilities and lead active, fulfilling lives. This paper presents a novel methodology employing advanced control techniques, including sliding mode control (SMC) and super-twisting sliding mode control (STSMC), to explore lower limb dynamics and effectively manage a two-part knee joint replacement. Through meticulous parameter optimization using a genetic algorithm (GA), guided by the integral time absolute error as the optimization objective, the controllers are finely tuned to maximize performance and responsiveness in real-world scenarios. The stability of the proposed controllers is thoroughly validated using mathematical analysis based on Lyapunov stability criteria. This ensures they perform robustly and can withstand disturbances. Comprehensive performance evaluations conducted via MATLAB/Simulink simulations offer valuable insights into the comparative efficacy of different control strategies under varying conditions, facilitating informed decision-making and refinement of prosthetic knee design. Real-time validation of the proposed methodology is achieved through a hardware-in-loop experimental setup featuring the advanced C2000 Delfino MCU F28379D Launchpad.

人工膝关节处于医疗创新的前沿,是恢复膝关节活动能力和提高膝关节相关疾病(如骨关节炎和损伤)患者生活质量的重要工具。通过忠实再现自然膝关节的复杂生物力学,这些装置使受术者能够恢复失去的体能,过上积极、充实的生活。本文介绍了一种采用先进控制技术的新方法,包括滑动模式控制(SMC)和超扭曲滑动模式控制(STSMC),以探索下肢动力学并有效管理双部分膝关节置换。在积分时间绝对误差作为优化目标的指导下,利用遗传算法(GA)对参数进行了细致的优化,从而对控制器进行了微调,以最大限度地提高其在实际应用中的性能和响应速度。利用基于 Lyapunov 稳定性标准的数学分析,对所提出的控制器的稳定性进行了全面验证。这确保了控制器的鲁棒性能和抗干扰能力。通过 MATLAB/Simulink 仿真进行的综合性能评估为了解不同控制策略在不同条件下的比较功效提供了宝贵的见解,有助于做出明智的决策和改进假肢膝关节的设计。通过采用先进的 C2000 Delfino MCU F28379D Launchpad 的硬件在环实验装置,对所提出的方法进行了实时验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Engineering Letters
Biomedical Engineering Letters ENGINEERING, BIOMEDICAL-
CiteScore
6.80
自引率
0.00%
发文量
34
期刊介绍: Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信