IEEE Transactions on Radiation and Plasma Medical Sciences最新文献

筛选
英文 中文
Deep-Learning-Based Cross-Modality Striatum Segmentation for Dopamine Transporter SPECT in Parkinson’s Disease 基于深度学习的帕金森病多巴胺转运体 SPECT 跨模态纹状体分割技术
IF 4.6
IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-03-08 DOI: 10.1109/TRPMS.2024.3398360
Haiyan Wang;Han Jiang;Gefei Chen;Yu Du;Zhonglin Lu;Zhanli Hu;Greta S. P. Mok
{"title":"Deep-Learning-Based Cross-Modality Striatum Segmentation for Dopamine Transporter SPECT in Parkinson’s Disease","authors":"Haiyan Wang;Han Jiang;Gefei Chen;Yu Du;Zhonglin Lu;Zhanli Hu;Greta S. P. Mok","doi":"10.1109/TRPMS.2024.3398360","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3398360","url":null,"abstract":"Striatum segmentation on dopamine transporter (DaT) SPECT is necessary to quantify striatal uptake for Parkinson’s disease (PD), but is challenging due to the inferior resolution. This work proposes a cross-modality automatic striatum segmentation, estimating MR-derived striatal contours from clinical SPECT images using the deep learning (DL) methods. \u0000<sup>123</sup>\u0000I-Ioflupane DaT SPECT and T1-weighted MR images from 200 subjects with 152 PD and 48 healthy controls are analyzed from the Parkinson’s progression markers initiative database. SPECT and MR images are registered, and four striatal compartment contours are manually segmented from MR images as the label. DL methods including nnU-Net, U-Net, generative adversarial networks, and SPECT thresholding-based method are implemented for comparison. SPECT and MR label pairs are split into train, validation, and test groups (136:24:40). Dice, Hausdorff distance (HD) 95%, and relative volume difference (RVD), striatal binding ratio (SBR) and asymmetry index (ASI) are analyzed. Results show that nnU-Net achieves better Dice (~0.7), HD 95% (~1.8), and RVD (~0.1) as compared to other methods for all striatal compartments and whole striatum. For clinical PD evaluation, nnU-Net also yields strong SBR consistency (mean difference, −0.012) and ASI correlation (Pearson correlation coefficient, 0.81). The proposed DL-based cross-modality striatum segmentation method is feasible for clinical DaT SPECT in PD.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 7","pages":"752-761"},"PeriodicalIF":4.6,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10525203","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142143654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-Tracer and Cross-Scanner Transfer Learning-Based Attenuation Correction for Brain SPECT 基于跨示踪器和跨扫描仪转移学习的脑 SPECT 衰减校正
IF 4.6
IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-03-08 DOI: 10.1109/TRPMS.2024.3374207
Hao Sun;Yu Du;Ching-Ni Lin;Han Jiang;Wenbo Huang;Pai-Yi Chiu;Guang-Uei Hung;Lijun Lu;Greta S. P. Mok
{"title":"Cross-Tracer and Cross-Scanner Transfer Learning-Based Attenuation Correction for Brain SPECT","authors":"Hao Sun;Yu Du;Ching-Ni Lin;Han Jiang;Wenbo Huang;Pai-Yi Chiu;Guang-Uei Hung;Lijun Lu;Greta S. P. Mok","doi":"10.1109/TRPMS.2024.3374207","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3374207","url":null,"abstract":"This study aims to investigate robust attenuation correction (AC) by generating attenuation maps \u0000<inline-formula> <tex-math>$(mu $ </tex-math></inline-formula>\u0000-maps) from nonattenuation-corrected (NAC) brain SPECT data using transfer learning (TL). Four sets of brain SPECT data (\u0000<inline-formula> <tex-math>$4times 30$ </tex-math></inline-formula>\u0000) were retrospectively collected: S-TRODAT-1, S-ECD, G-TRODAT-1, and G-ECD. A 3-D attention-based conditional generative adversarial network was pretrained using 22 paired 3-D NAC SPECT images and corresponding CT \u0000<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>\u0000-maps for four patient groups. Various numbers (\u0000<inline-formula> <tex-math>$n,,=$ </tex-math></inline-formula>\u0000 4–22) of paired NAC SPECT and corresponding \u0000<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>\u0000-maps from S-TRODAT-1 were then used to fine-tune (FT) the other three pretrained deep learning (DL) networks, i.e., S-ECD, G-TRODAT-1, and G-ECD. All patients in S-TRODAT-1 group were tested on their own network (DL-AC), and on the pretrained models with FT (FT-AC) and without FT (NFT-AC). The FT-AC methods used 22 (FT22), 12 (FT12), 8 (FT8), and 4 (FT4) paired data for FT, respectively. Our results show that FT22 and FT12 could outperform DL-AC for cross-tracer S-ECD and cross-scanner G-TRODAT-1 using CT-based AC (CT-AC) as the reference. FT22 also outperforms DL-AC for cross-tracer+cross-scanner G-ECD. FT8 performs comparably to DL-AC, while FT4 is worse than DL-AC but still better than NAC and NFT-AC in each group. Attenuation map generation is feasible for brain SPECT based on cross-tracer and/or cross-scanner FT-AC using a smaller number of patient data. The FT-AC performance improves as the number of data used for FT increases.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 6","pages":"664-676"},"PeriodicalIF":4.6,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10461117","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Context-Aware Transformer GAN for Direct Generation of Attenuation and Scatter Corrected PET Data 用于直接生成衰减和散射校正 PET 数据的情境感知变换器 GAN
IF 4.6
IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-03-06 DOI: 10.1109/TRPMS.2024.3397318
Mojtaba Jafaritadi;Emily Anaya;Garry Chinn;Jarrett Rosenberg;Tie Liang;Craig S. Levin
{"title":"Context-Aware Transformer GAN for Direct Generation of Attenuation and Scatter Corrected PET Data","authors":"Mojtaba Jafaritadi;Emily Anaya;Garry Chinn;Jarrett Rosenberg;Tie Liang;Craig S. Levin","doi":"10.1109/TRPMS.2024.3397318","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3397318","url":null,"abstract":"We present a context-aware generative deep learning framework to produce photon attenuation and scatter corrected (ASC) positron emission tomography (PET) images directly from nonattenuation and nonscatter corrected (NASC) images. We trained conditional generative adversarial networks (cGANs) on either single-modality (NASC) or multimodality (NASC+MRI) input data to map NASC images to pixel-wise continuously valued ASC PET images. We designed and evaluated four cGAN models including Pix2Pix, attention-guided cGAN (AG-Pix2Pix), vision transformer cGAN (ViT-GAN), and shifted window transformer cGAN (Swin-GAN). Retrospective 18F-fluorodeoxyglucose (18F-FDG) full-body PET images from 33 subjects were collected and analyzed. Notably, as a particular strength of this work, each patient in the study underwent both a PET/CT scan and a multisequence PET/MRI scan on the same day giving us a gold standard from the former as we investigate ASC for the latter. Quantitative analysis, evaluating image quality using peak signal-to-noise ratio (PSNR), multiscale structural similarity index (MS-SSIM), normalized mean-squared error (NRMSE), and mean absolute error (MAE) metrics, showed no significant impact of input type on PSNR (\u0000<inline-formula> <tex-math>$p=0.95$ </tex-math></inline-formula>\u0000), MS-SSIM (\u0000<inline-formula> <tex-math>$p=0.083$ </tex-math></inline-formula>\u0000), NRMSE (\u0000<inline-formula> <tex-math>$p=0.72$ </tex-math></inline-formula>\u0000), or MAE (\u0000<inline-formula> <tex-math>$p=0.70$ </tex-math></inline-formula>\u0000). For multimodal input data, Swin-GAN outperformed Pix2Pix (\u0000<inline-formula> <tex-math>$p=0.023$ </tex-math></inline-formula>\u0000) and AG-Pix2Pix (\u0000<inline-formula> <tex-math>$p lt 0.001$ </tex-math></inline-formula>\u0000), but not ViT-GAN (\u0000<inline-formula> <tex-math>$p=0.154$ </tex-math></inline-formula>\u0000) in PSNR. Swin-GAN achieved significantly higher MS-SSIM than ViT-GAN (\u0000<inline-formula> <tex-math>$p=0.007$ </tex-math></inline-formula>\u0000) and AG-Pix2Pix (\u0000<inline-formula> <tex-math>$p=0.002$ </tex-math></inline-formula>\u0000). Multimodal Swin-GAN demonstrated reduced NRMSE and MAE compared to ViT-GAN (\u0000<inline-formula> <tex-math>$p=0.023$ </tex-math></inline-formula>\u0000 and 0.031, respectively) and AG-Pix2Pix (both \u0000<inline-formula> <tex-math>$p lt 0.001$ </tex-math></inline-formula>\u0000), with marginal improvement over Pix2Pix (\u0000<inline-formula> <tex-math>$p lt 0.064$ </tex-math></inline-formula>\u0000). The cGAN models, in particular Swin-GAN, consistently generated reliable and accurate ASC PET images, whether using multimodal or single-modal input data. The findings indicate that this methodology can be used to generate ASC data from standalone PET scanners or integrated PET/MRI systems, without relying on transmission scan-based attenuation maps.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 6","pages":"677-689"},"PeriodicalIF":4.6,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10521624","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Member Get-A-Member (MGM) Program 会员注册(MGM)计划
IF 4.4
IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-03-04 DOI: 10.1109/TRPMS.2024.3369272
{"title":"Member Get-A-Member (MGM) Program","authors":"","doi":"10.1109/TRPMS.2024.3369272","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3369272","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 3","pages":"331-331"},"PeriodicalIF":4.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10459099","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140031650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors 电气和电子工程师学会《辐射与等离子体医学科学杂志》作者须知
IF 4.4
IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-03-04 DOI: 10.1109/TRPMS.2024.3366371
{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Information for Authors","authors":"","doi":"10.1109/TRPMS.2024.3366371","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3366371","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 3","pages":"C3-C3"},"PeriodicalIF":4.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10459069","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140031633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Data Port IEEE 数据端口
IF 4.4
IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-03-04 DOI: 10.1109/TRPMS.2024.3369270
{"title":"IEEE Data Port","authors":"","doi":"10.1109/TRPMS.2024.3369270","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3369270","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 3","pages":"332-332"},"PeriodicalIF":4.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10459100","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140031609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information 电气和电子工程师学会辐射与等离子体医学科学杂志》(IEEE Transactions on Radiation and Plasma Medical Sciences)出版信息
IF 4.4
IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-03-04 DOI: 10.1109/TRPMS.2024.3366373
{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information","authors":"","doi":"10.1109/TRPMS.2024.3366373","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3366373","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 3","pages":"C2-C2"},"PeriodicalIF":4.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10459103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140031569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Member Get-A-Member (MGM) Program 会员注册(MGM)计划
IF 4.4
IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-03-02 DOI: 10.1109/TRPMS.2024.3390829
{"title":"Member Get-A-Member (MGM) Program","authors":"","doi":"10.1109/TRPMS.2024.3390829","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3390829","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 5","pages":"580-580"},"PeriodicalIF":4.4,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10517731","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140820218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Nuclear Science Symposium 电气和电子工程师学会核科学研讨会
IF 4.4
IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-03-02 DOI: 10.1109/TRPMS.2024.3390831
{"title":"IEEE Nuclear Science Symposium","authors":"","doi":"10.1109/TRPMS.2024.3390831","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3390831","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 5","pages":"579-579"},"PeriodicalIF":4.4,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10517730","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140820336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information 电气和电子工程师学会辐射与等离子体医学科学杂志》(IEEE Transactions on Radiation and Plasma Medical Sciences)出版信息
IF 4.4
IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-03-02 DOI: 10.1109/TRPMS.2024.3390313
{"title":"IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information","authors":"","doi":"10.1109/TRPMS.2024.3390313","DOIUrl":"https://doi.org/10.1109/TRPMS.2024.3390313","url":null,"abstract":"","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 5","pages":"C2-C2"},"PeriodicalIF":4.4,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10517802","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140820219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信