Finite Element Method-Based Hybrid MRI/CBCT Generation to Improve Liver Stereotactic Body Radiation Therapy Targets Localization Accuracy

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Zeyu Zhang;Mark Chen;Ke Lu;Dongyang Guo;Zhuoran Jiang;Hualiang Zhong;Jason Molitoris;Phuoc T. Tran;Fang-Fang Yin;Lei Ren
{"title":"Finite Element Method-Based Hybrid MRI/CBCT Generation to Improve Liver Stereotactic Body Radiation Therapy Targets Localization Accuracy","authors":"Zeyu Zhang;Mark Chen;Ke Lu;Dongyang Guo;Zhuoran Jiang;Hualiang Zhong;Jason Molitoris;Phuoc T. Tran;Fang-Fang Yin;Lei Ren","doi":"10.1109/TRPMS.2024.3466184","DOIUrl":null,"url":null,"abstract":"Cone-beam CT (CBCT) is commonly used in treatment imaging, but its limited soft tissue contrast presents challenges for liver tumor localization. As a result, indirect localization methods relying on the liver’s boundary are commonly utilized, which have limited accuracy for tumor localization. On-board MRI offers superior soft tissue contrast but is limited by the cost. To address this, we devised a method to generate onboard virtual MRI by integrating pretreatment MRI with onboard CBCT, enhancing liver stereotactic body radiation therapy (SBRT) tumor localization accuracy. We employed a finite element method (FEM) for deformable mapping, deforming prior liver MR images onto CBCT geometry to create a virtual MRI. This hybrid virtual-MRI/CBCT (hMRI-CBCT) approach was evaluated in a pilot study involving 48 patients. The hMRI-CBCT demonstrated superb soft-tissue contrast with clear tumor visualization. Registration accuracy of hMRI-CBCT to planning CT significantly surpasses the onboard CBCT to planning CT registration, particularly for tumors not near the liver boundary, with an average error reduction of <inline-formula> <tex-math>$1.53~\\pm ~2$ </tex-math></inline-formula>.16 mm. Our study demonstrated that hybrid MRI/CBCT can apparently reduce localization errors in liver SBRT, potentially improving tumor control and reducing toxicities, and opening avenues for further margin reduction and dose escalation.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 3","pages":"372-381"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10689493/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Cone-beam CT (CBCT) is commonly used in treatment imaging, but its limited soft tissue contrast presents challenges for liver tumor localization. As a result, indirect localization methods relying on the liver’s boundary are commonly utilized, which have limited accuracy for tumor localization. On-board MRI offers superior soft tissue contrast but is limited by the cost. To address this, we devised a method to generate onboard virtual MRI by integrating pretreatment MRI with onboard CBCT, enhancing liver stereotactic body radiation therapy (SBRT) tumor localization accuracy. We employed a finite element method (FEM) for deformable mapping, deforming prior liver MR images onto CBCT geometry to create a virtual MRI. This hybrid virtual-MRI/CBCT (hMRI-CBCT) approach was evaluated in a pilot study involving 48 patients. The hMRI-CBCT demonstrated superb soft-tissue contrast with clear tumor visualization. Registration accuracy of hMRI-CBCT to planning CT significantly surpasses the onboard CBCT to planning CT registration, particularly for tumors not near the liver boundary, with an average error reduction of $1.53~\pm ~2$ .16 mm. Our study demonstrated that hybrid MRI/CBCT can apparently reduce localization errors in liver SBRT, potentially improving tumor control and reducing toxicities, and opening avenues for further margin reduction and dose escalation.
基于有限元法的MRI/CBCT混合生成提高肝脏立体定向放射治疗靶点定位精度
锥形束CT (Cone-beam CT, CBCT)是一种常用的治疗成像技术,但其局限性给肝脏肿瘤定位带来了挑战。因此,通常采用依赖肝脏边界的间接定位方法,这种方法对肿瘤的定位精度有限。机载核磁共振成像提供了优越的软组织对比,但受到成本的限制。为了解决这个问题,我们设计了一种将预处理MRI与机载CBCT相结合的方法来生成机载虚拟MRI,从而提高肝脏立体定向放射治疗(SBRT)肿瘤定位的准确性。我们采用有限元法(FEM)进行可变形映射,将先前的肝脏MR图像变形为CBCT几何形状,以创建虚拟MRI。在一项涉及48名患者的试点研究中,对这种虚拟mri /CBCT (hMRI-CBCT)混合方法进行了评估。hMRI-CBCT显示出色的软组织对比,肿瘤清晰可见。hMRI-CBCT对计划CT的配准精度明显优于机载CBCT对计划CT的配准精度,特别是对于不靠近肝脏边界的肿瘤,平均误差降低1.53~ 2.16 mm。我们的研究表明,混合MRI/CBCT可以明显减少肝脏SBRT的定位错误,潜在地改善肿瘤控制和减少毒性,并为进一步减少边缘和剂量增加开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信