{"title":"基于fpga的时间-数字转换器的反向转换传播和虚拟Bin方法实现","authors":"Daehee Lee;Sun Il Kwon","doi":"10.1109/TRPMS.2024.3457618","DOIUrl":null,"url":null,"abstract":"We propose an field-programmable gate array (FPGA)-based time-to-digital converter (TDC) that utilizes a virtual bin (VB) approach with opposite-transition (OT) inputs on two tapped-delay lines (TDLs) to obtain less-correlated time bins. The VBs from the proposed OT TDC were obtained by comparing and segmenting the less-correlated bins collected from the two TDLs. The OT TDC was implemented on a 7-series FPGA (Xilinx) to verify performance. A conventional monotonic-transition (MT) TDC, which used identical transition inputs (0-to-1 or 1-to-0 transition) for the two TDLs, was also implemented as a control group. The results were compared with those from the MT TDC and other studies. The proposed method effectively improves time resolution and integral linearity while keeping resource usage low by exploiting these characteristics. The average bin size and RMS value were 5.5 and 4.2 ps, respectively. Moreover, the proposed method exhibits stable performance under temperature variations and implementation location changes. The VB OT TDC, which applies the VB method to the OT TDC, successfully measures detection time differences of two signals from two Cerenkov radiator integrated microchannel plate photomultiplier tubes (CRI-MCP-PMTs) with a high-timing precision of sub-100 ps. The VB OT TDC can be used for next-generation applications that require fast-timing measurements.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 2","pages":"148-156"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of a FPGA-Based Time-to-Digital Converter Utilizing Opposite-Transition Propagation and Virtual Bin Method\",\"authors\":\"Daehee Lee;Sun Il Kwon\",\"doi\":\"10.1109/TRPMS.2024.3457618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an field-programmable gate array (FPGA)-based time-to-digital converter (TDC) that utilizes a virtual bin (VB) approach with opposite-transition (OT) inputs on two tapped-delay lines (TDLs) to obtain less-correlated time bins. The VBs from the proposed OT TDC were obtained by comparing and segmenting the less-correlated bins collected from the two TDLs. The OT TDC was implemented on a 7-series FPGA (Xilinx) to verify performance. A conventional monotonic-transition (MT) TDC, which used identical transition inputs (0-to-1 or 1-to-0 transition) for the two TDLs, was also implemented as a control group. The results were compared with those from the MT TDC and other studies. The proposed method effectively improves time resolution and integral linearity while keeping resource usage low by exploiting these characteristics. The average bin size and RMS value were 5.5 and 4.2 ps, respectively. Moreover, the proposed method exhibits stable performance under temperature variations and implementation location changes. The VB OT TDC, which applies the VB method to the OT TDC, successfully measures detection time differences of two signals from two Cerenkov radiator integrated microchannel plate photomultiplier tubes (CRI-MCP-PMTs) with a high-timing precision of sub-100 ps. The VB OT TDC can be used for next-generation applications that require fast-timing measurements.\",\"PeriodicalId\":46807,\"journal\":{\"name\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"volume\":\"9 2\",\"pages\":\"148-156\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10673987/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10673987/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
摘要
我们提出了一种基于现场可编程门阵列(FPGA)的时间-数字转换器(TDC),该转换器利用虚拟箱(VB)方法,在两个抽头延迟线(tdl)上具有对位跃迁(OT)输入,以获得相关性较低的时间箱。建议OT TDC中的VBs是通过比较和分段从两个tdl中收集的相关性较低的bin得到的。OT TDC在7系列FPGA (Xilinx)上实现,以验证性能。传统的单调转换(MT) TDC,对两个tdl使用相同的转换输入(0到1或1到0转换),也被实施作为对照组。结果与MT TDC和其他研究的结果进行了比较。该方法利用这些特性,有效地提高了时间分辨率和积分线性度,同时保持了较低的资源利用率。平均箱大小和均方根值分别为5.5和4.2 ps。此外,该方法在温度变化和实现位置变化下具有稳定的性能。VB OT TDC将VB方法应用于OT TDC,成功测量了来自两个Cerenkov辐射集成微通道板光电倍增管(cri - mcp - pmt)的两个信号的检测时间差,定时精度低于100 ps。VB OT TDC可用于需要快速定时测量的下一代应用。
Implementation of a FPGA-Based Time-to-Digital Converter Utilizing Opposite-Transition Propagation and Virtual Bin Method
We propose an field-programmable gate array (FPGA)-based time-to-digital converter (TDC) that utilizes a virtual bin (VB) approach with opposite-transition (OT) inputs on two tapped-delay lines (TDLs) to obtain less-correlated time bins. The VBs from the proposed OT TDC were obtained by comparing and segmenting the less-correlated bins collected from the two TDLs. The OT TDC was implemented on a 7-series FPGA (Xilinx) to verify performance. A conventional monotonic-transition (MT) TDC, which used identical transition inputs (0-to-1 or 1-to-0 transition) for the two TDLs, was also implemented as a control group. The results were compared with those from the MT TDC and other studies. The proposed method effectively improves time resolution and integral linearity while keeping resource usage low by exploiting these characteristics. The average bin size and RMS value were 5.5 and 4.2 ps, respectively. Moreover, the proposed method exhibits stable performance under temperature variations and implementation location changes. The VB OT TDC, which applies the VB method to the OT TDC, successfully measures detection time differences of two signals from two Cerenkov radiator integrated microchannel plate photomultiplier tubes (CRI-MCP-PMTs) with a high-timing precision of sub-100 ps. The VB OT TDC can be used for next-generation applications that require fast-timing measurements.