基于正交元学习的医学影像学考试时间适应

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Zhiwen Wang;Zexin Lu;Tao Wang;Ziyuan Yang;Hui Yu;Zhongxian Wang;Yinyu Chen;Jingfeng Lu;Yi Zhang
{"title":"基于正交元学习的医学影像学考试时间适应","authors":"Zhiwen Wang;Zexin Lu;Tao Wang;Ziyuan Yang;Hui Yu;Zhongxian Wang;Yinyu Chen;Jingfeng Lu;Yi Zhang","doi":"10.1109/TRPMS.2024.3462542","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) models, which have significantly promoted medical imaging, typically assume that training and testing data come from the same domain and distribution. However, these models struggle with unseen testing variations, like different imaging scanners or protocols, leading to suboptimal results from distribution mismatches between training and testing data. Despite extensive research, the issue of distribution mismatch in DL-based medical imaging has been largely overlooked in current literature. To improve the performance with mismatched testing data, this article proposes an orthogonal meta-learning (OML) framework for test-time adaptation (TTA) in medical imaging. Specifically, during training, we develop supervised meta-training reconstruction tasks to guide the self-supervised meta-testing task. Additionally, we introduce an orthogonal learning strategy to enforce orthogonality of pretrained parameters during training, which accelerates convergence during TTA and enhances performance. During the testing stage, the fine-tuned meta-learned parameters effectively reconstruct new, unseen testing data. Extensive experiments on magnetic resonance imaging and computed tomography datasets were conducted to validate our method’s effectiveness against other state-of-the-art methods, including supervised ones, in various mismatch scenarios.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 2","pages":"215-227"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Test-Time Adaptation via Orthogonal Meta-Learning for Medical Imaging\",\"authors\":\"Zhiwen Wang;Zexin Lu;Tao Wang;Ziyuan Yang;Hui Yu;Zhongxian Wang;Yinyu Chen;Jingfeng Lu;Yi Zhang\",\"doi\":\"10.1109/TRPMS.2024.3462542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning (DL) models, which have significantly promoted medical imaging, typically assume that training and testing data come from the same domain and distribution. However, these models struggle with unseen testing variations, like different imaging scanners or protocols, leading to suboptimal results from distribution mismatches between training and testing data. Despite extensive research, the issue of distribution mismatch in DL-based medical imaging has been largely overlooked in current literature. To improve the performance with mismatched testing data, this article proposes an orthogonal meta-learning (OML) framework for test-time adaptation (TTA) in medical imaging. Specifically, during training, we develop supervised meta-training reconstruction tasks to guide the self-supervised meta-testing task. Additionally, we introduce an orthogonal learning strategy to enforce orthogonality of pretrained parameters during training, which accelerates convergence during TTA and enhances performance. During the testing stage, the fine-tuned meta-learned parameters effectively reconstruct new, unseen testing data. Extensive experiments on magnetic resonance imaging and computed tomography datasets were conducted to validate our method’s effectiveness against other state-of-the-art methods, including supervised ones, in various mismatch scenarios.\",\"PeriodicalId\":46807,\"journal\":{\"name\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"volume\":\"9 2\",\"pages\":\"215-227\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radiation and Plasma Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10681615/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10681615/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

深度学习(DL)模型极大地促进了医学成像,它通常假设训练和测试数据来自相同的域和分布。然而,这些模型与看不见的测试变化(如不同的成像扫描仪或协议)作斗争,导致训练和测试数据之间的分布不匹配导致次优结果。尽管进行了广泛的研究,但在目前的文献中,基于dl的医学成像中的分布不匹配问题在很大程度上被忽视了。为了提高测试数据不匹配时的性能,本文提出了一种正交元学习(OML)框架,用于医学成像测试时间适应(TTA)。具体来说,在训练过程中,我们开发了监督元训练重构任务来指导自监督元测试任务。此外,我们引入了一种正交学习策略,在训练过程中强制预训练参数的正交性,从而加速了TTA过程中的收敛并提高了性能。在测试阶段,经过微调的元学习参数可以有效地重建新的、未见过的测试数据。在磁共振成像和计算机断层扫描数据集上进行了大量实验,以验证我们的方法在各种不匹配场景下与其他最先进方法(包括监督方法)的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Test-Time Adaptation via Orthogonal Meta-Learning for Medical Imaging
Deep learning (DL) models, which have significantly promoted medical imaging, typically assume that training and testing data come from the same domain and distribution. However, these models struggle with unseen testing variations, like different imaging scanners or protocols, leading to suboptimal results from distribution mismatches between training and testing data. Despite extensive research, the issue of distribution mismatch in DL-based medical imaging has been largely overlooked in current literature. To improve the performance with mismatched testing data, this article proposes an orthogonal meta-learning (OML) framework for test-time adaptation (TTA) in medical imaging. Specifically, during training, we develop supervised meta-training reconstruction tasks to guide the self-supervised meta-testing task. Additionally, we introduce an orthogonal learning strategy to enforce orthogonality of pretrained parameters during training, which accelerates convergence during TTA and enhances performance. During the testing stage, the fine-tuned meta-learned parameters effectively reconstruct new, unseen testing data. Extensive experiments on magnetic resonance imaging and computed tomography datasets were conducted to validate our method’s effectiveness against other state-of-the-art methods, including supervised ones, in various mismatch scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信