Applied Biological Chemistry最新文献

筛选
英文 中文
Correction: Quantitative analysis of seven commonly used synthetic food color additives by HPLC-PDA 更正:用HPLC-PDA对七种常用的合成食品色素添加剂进行定量分析
IF 2.3 3区 农林科学
Applied Biological Chemistry Pub Date : 2024-12-27 DOI: 10.1186/s13765-024-00972-w
You Rim Min, Jun-Bae Hong, Sam Han, Min-Ji Choi, Seong Bo Shim, Hae Won Jang, Jung-Bin Lee
{"title":"Correction: Quantitative analysis of seven commonly used synthetic food color additives by HPLC-PDA","authors":"You Rim Min, Jun-Bae Hong, Sam Han, Min-Ji Choi, Seong Bo Shim, Hae Won Jang, Jung-Bin Lee","doi":"10.1186/s13765-024-00972-w","DOIUrl":"10.1186/s13765-024-00972-w","url":null,"abstract":"","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00972-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The genetics and genomics of milk thistle: unlocking its therapeutic potential through modern breeding and biotechnological innovations 水飞蓟的遗传学和基因组学:通过现代育种和生物技术创新释放其治疗潜力
IF 2.3 3区 农林科学
Applied Biological Chemistry Pub Date : 2024-12-26 DOI: 10.1186/s13765-024-00967-7
Priskila Tolangi, Jeehyoung Shim, Raña Mae Sumabat, Sunghan Kim, Hyun-Seung Park, Kyung Do Kim, Hyun Uk Kim, Sanghyun Lee, Joong Hyoun Chin
{"title":"The genetics and genomics of milk thistle: unlocking its therapeutic potential through modern breeding and biotechnological innovations","authors":"Priskila Tolangi,&nbsp;Jeehyoung Shim,&nbsp;Raña Mae Sumabat,&nbsp;Sunghan Kim,&nbsp;Hyun-Seung Park,&nbsp;Kyung Do Kim,&nbsp;Hyun Uk Kim,&nbsp;Sanghyun Lee,&nbsp;Joong Hyoun Chin","doi":"10.1186/s13765-024-00967-7","DOIUrl":"10.1186/s13765-024-00967-7","url":null,"abstract":"<div><p>Milk thistle (<i>Silybum marianum</i>) is a Mediterranean herb renowned for its liver-protective, antioxidant, anti-inflammatory, and detoxifying properties, primarily attributed to the bioactive compound silymarin. Recent studies have also highlighted its potential efficacy against COVID-19, contributing to the growing demand for milk thistle dietary supplements, particularly for liver health and immunity support. Milk thistle seeds, rich in silymarin and unsaturated fatty acids, hold significant industrial value as both medicinal and oilseed crops. To meet the growing demand, it is essential to develop standardized seeds, cultivation practices, and extraction methods aimed at maximizing yields of silymarin and other valuable metabolites. Recent advancements in genetic and genomic research, including the development of the first reference genome of <i>S. marianum</i>, have played a pivotal role in elucidating the biosynthesis pathways of silymarin and optimizing phytochemical production. This review highlights recent advancements in the genetics, genomics, and biochemistry of milk thistle, with particular emphasis on the importance of diverse genetic resources and AI-driven phenomics strategies, such as hyperspectral and RGB imaging, for high-yield and chemotype breeding. Further, feasibility of developing elite cultivars through molecular approaches, such as genome editing and metabolic engineering, is also discussed as the new traits obtained this way would be key to enhancing the commercial value of milk thistle in light of mass production of phytochemicals to meet rising market demands.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00967-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, synthesis, and biological evaluation of (E)-2-benzylidene-1-indanones derivatized by bioisosteric replacement of aurones 生物等构取代法衍生的(E)-2-苄基-1-吲哚酮的设计、合成和生物学评价
IF 2.3 3区 农林科学
Applied Biological Chemistry Pub Date : 2024-12-25 DOI: 10.1186/s13765-024-00973-9
Youngshim Lee, Seunghyun Ahn, Euitaek Jung, Dongsoo Koh, Yoongho Lim, Young Han Lee, Soon Young Shin
{"title":"Design, synthesis, and biological evaluation of (E)-2-benzylidene-1-indanones derivatized by bioisosteric replacement of aurones","authors":"Youngshim Lee,&nbsp;Seunghyun Ahn,&nbsp;Euitaek Jung,&nbsp;Dongsoo Koh,&nbsp;Yoongho Lim,&nbsp;Young Han Lee,&nbsp;Soon Young Shin","doi":"10.1186/s13765-024-00973-9","DOIUrl":"10.1186/s13765-024-00973-9","url":null,"abstract":"<div><p>Thymic stromal lymphopoietin (TSLP) is a cytokine derived from epithelial cells and plays an essential role in the onset and activation of Th2-derived allergic inflammatory conditions, including atopic dermatitis. Despite their potential as drug targets, well-defined small molecules that effectively block TSLP expression are still lacking. A plant-derived secondary metabolite, aurone, was derivatized based on bioisosteric replacement to identify compounds that inhibit the promoter activity of TSLP. Thirteen (<i>E</i>)-2-benzylidene-1-indanones were designed and synthesized, and their structures were identified using NMR spectroscopy and mass spectrometry. Inhibition of the expression of TSLP triggered by interleukin-4 (IL-4) caused by (<i>E</i>)-2-benzylidene-1-indanones was measured using a TSLP gene promoter-reporter activity assay. Because compound <b>12</b>, (<i>E</i>)-5-methoxy-2-(3-methoxybenzylidene)-2,3-dihydro-1<i>H</i>-inden-1-one, showed the best activity, further biological experiments, including RT-PCR analysis, quantitative real-time PCR, and inhibitory effects on IL-4-induced early growth response-1 (EGR-1) expression, EGR-1 DNA-binding activity, and IL-4-induced phosphorylation of the mitogen-activated protein kinase (MAPK) signaling cascade were performed. This study demonstrated that compound <b>12</b> acts on MAPK to block IL-4-triggered mRNA expression of TSLP via the MAPK-EGR-1 signaling pathway in HaCaT keratinocytes.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00973-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism of antimicrobial peptide AMP-17 for inhibition of Aspergillus flavus 抗菌肽AMP-17抑制黄曲霉的作用机制
IF 2.3 3区 农林科学
Applied Biological Chemistry Pub Date : 2024-12-24 DOI: 10.1186/s13765-024-00964-w
Dongxu Song, Mingming Chen, Longbing Yang, Zhenlong Jiao, Jian Peng, Guo Guo
{"title":"Mechanism of antimicrobial peptide AMP-17 for inhibition of Aspergillus flavus","authors":"Dongxu Song,&nbsp;Mingming Chen,&nbsp;Longbing Yang,&nbsp;Zhenlong Jiao,&nbsp;Jian Peng,&nbsp;Guo Guo","doi":"10.1186/s13765-024-00964-w","DOIUrl":"10.1186/s13765-024-00964-w","url":null,"abstract":"<div><p><i>Aspergillus flavus</i> is a pathogenic fungus with a broad host range, and its secondary metabolite, aflatoxin, recognized as the world’s first naturally occurring carcinogen. Nonetheless, the current control measures for <i>A</i>. <i>flavus</i> are inadequate, thus, it is imperative to seek alternative control methods for this species. In the present study, we identified an antimicrobial peptide AMP-17, which was found to effectively inhibit the conidial germination, growth, conidiation, and aflatoxin production of <i>A. flavus</i>. Additionally, our investigation revealed that the inhibition of <i>A. flavus</i> by AMP-17 is primarily attributed to increase cell membrane permeability, modify cell surface morphology, and compromise cellular integrity, as observed through flow cytometry and scanning electron microscopy. Transcriptome analysis indicated significant transcriptional changes in several genes associated with cell wall, cell membrane, cell cycle, detoxification, and aflatoxin biosynthesis in response to AMP-17 treatment, suggesting disruption of these cellular processes and pathways in <i>A. flavus</i>. Furthermore, AMP-17 exhibited a broad-spectrum antifungal activity against <i>Aspergillus</i> spp. These findings provide a strong theoretical basis for the potential use of AMP-17 as an effective antifungal agent against <i>A. flavus</i>.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00964-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization and application of biochar derived from greenhouse crop by-products for soil improvement and crop productivity in South Korea 韩国温室作物副产品生物炭在土壤改良和作物生产力方面的特性和应用
IF 2.3 3区 农林科学
Applied Biological Chemistry Pub Date : 2024-12-23 DOI: 10.1186/s13765-024-00968-6
Yu Na Lee, Sin Sil Kim, Dong Won Lee, Jae Hong Shim, Sang Ho Jeon, Ahn Sung Roh, Soon Ik Kwon, Dong-Cheol Seo, Seong Heon Kim
{"title":"Characterization and application of biochar derived from greenhouse crop by-products for soil improvement and crop productivity in South Korea","authors":"Yu Na Lee,&nbsp;Sin Sil Kim,&nbsp;Dong Won Lee,&nbsp;Jae Hong Shim,&nbsp;Sang Ho Jeon,&nbsp;Ahn Sung Roh,&nbsp;Soon Ik Kwon,&nbsp;Dong-Cheol Seo,&nbsp;Seong Heon Kim","doi":"10.1186/s13765-024-00968-6","DOIUrl":"10.1186/s13765-024-00968-6","url":null,"abstract":"<div><p>The study examined the optimal production conditions and application rates of biochar derived from greenhouse crop by-products to enhance soil improvement and increase crop yield, thereby promoting sustainable agriculture in South Korea. The expansion of greenhouse cultivation has resulted in significant waste management challenges, and biochar production has emerged as a promising recycling solution for these by-products. Biochar was produced from red pepper stalks through pyrolysis at 200 to 600 °C, and its chemical properties, including pH, EC, T-C, and T-N, were analyzed. In this study, the chemical properties of biochar showed a significant increase in pH (from 5.8 to 10.3), EC (from 46.0 to 119.5 dS m⁻¹), and T-C (from 47.7 to 63.1%) with rising pyrolysis temperatures, while T-N decreased due to nitrogen volatilization above 300 °C. In the lettuce cultivation experiment, biochar application significantly improved fresh weight yield, with the biochar-treated group achieving a maximum of 83.3 g pot<sup>− 1</sup> in the first cropping season, compared to 62.8 g pot<sup>− 1</sup> in the NPK-only treatment group. However, excessive biochar application rates (≥ 800 kg ha⁻¹) led to yield reductions in the second cropping season, likely due to increased soil pH and EC. These results suggest the potential of recycling greenhouse crop residues into biochar to enhance soil fertility and crop productivity while indicating the need to manage application rates to minimize negative impacts from excessive use.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00968-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial diversity of soils under different land use and chemical conditions 不同土地利用和化学条件下土壤微生物多样性
IF 2.3 3区 农林科学
Applied Biological Chemistry Pub Date : 2024-12-22 DOI: 10.1186/s13765-024-00970-y
Jung-Hwan Yoon, Mahesh Adhikari, Seok Soon Jeong, Sang Phil Lee, Hyuck Soo Kim, Geon Seung Lee, Duck Hwan Park, Heejung Kim, Jae E. Yang
{"title":"Microbial diversity of soils under different land use and chemical conditions","authors":"Jung-Hwan Yoon,&nbsp;Mahesh Adhikari,&nbsp;Seok Soon Jeong,&nbsp;Sang Phil Lee,&nbsp;Hyuck Soo Kim,&nbsp;Geon Seung Lee,&nbsp;Duck Hwan Park,&nbsp;Heejung Kim,&nbsp;Jae E. Yang","doi":"10.1186/s13765-024-00970-y","DOIUrl":"10.1186/s13765-024-00970-y","url":null,"abstract":"<div><p>Soil microbial communities are crucial to ecosystem functionality, influencing soil fertility and health. Microbial diversity in soil is impacted by various land-use practices and environmental conditions, but the effects on both prokaryotic and eukaryotic communities remain insufficiently understood. This study investigates the influence of different land-use types and soil chemical properties on the composition and diversity of prokaryotic and eukaryotic microbes using next-generation sequencing (NGS). Soil samples were collected from seven distinct locations in South Korea, representing various land uses, including paddy fields, upland fields, forest areas, hydrocarbon- and heavy-metal-contaminated sites, greenhouse soils, and reclaimed tidal soils. Alpha diversity, assessed using Chao1 and Shannon indices, and beta diversity, evaluated through Bray-Curtis dissimilarity and Principal Coordinates Analysis (PCoA), were used to characterize microbial diversity. Soil chemical properties were analyzed, and their relationships with microbial community structure were examined. Results revealed significant variations in both prokaryotic and eukaryotic diversities across different land uses. Soils under conventional agricultural management (paddy and upland fields) showed higher microbial diversity compared to soils with high salinity, contamination, or low suitability for agriculture. Prokaryotic communities were dominated by <i>Proteobacteria</i>, <i>Chloroflexi</i>, <i>Acidobacteria</i>, and <i>Bacteroidetes</i>, with variations in abundance linked to soil condition and quality. Eukaryotic communities predominantly consisted of <i>Opisthokonta</i>, SAR (<i>Stramenopiles</i>,<i> Alveolates</i> and <i>Rhizaria)</i>, and Amoebozoa, with distinct abundance patterns across different soils. In conclusion, land-use practices and soil chemical properties significantly influence microbial diversity and community composition. Soils subjected to less stress, e.g., agricultural soils, exhibited higher microbial diversity, while stressed soils, e.g., contaminated and saline soils, showed reduced diversity. These findings emphasize the importance of understanding the interplay between land management and microbial ecology for optimizing soil fertility and health.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00970-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of biodegradation and formation of biodegradable microplastics in soil and freshwater environments 可生物降解微塑料在土壤和淡水环境中的生物降解和形成研究进展
IF 2.3 3区 农林科学
Applied Biological Chemistry Pub Date : 2024-12-21 DOI: 10.1186/s13765-024-00959-7
Nehala Sona Payanthoth, Nik Nurhidayu Nik Mut, Palas Samanta, Guanlin Li, Jinho Jung
{"title":"A review of biodegradation and formation of biodegradable microplastics in soil and freshwater environments","authors":"Nehala Sona Payanthoth,&nbsp;Nik Nurhidayu Nik Mut,&nbsp;Palas Samanta,&nbsp;Guanlin Li,&nbsp;Jinho Jung","doi":"10.1186/s13765-024-00959-7","DOIUrl":"10.1186/s13765-024-00959-7","url":null,"abstract":"<div><p>Plastic pollution is of critical environmental concern, thus biodegradable plastics (BPs) have emerged as a potential solution to limit plastic waste accumulation. However, the fate of BPs in the environment, particularly their degradation and the subsequent generation of biodegradable microplastic (BMP) particles, remains poorly understood. This review aims to provide comprehensive insights into the biodegradation process of BPs and their impacts on soil and freshwater environments. Microorganisms play a pivotal role in this process by dismantling polymer chains into smaller particles. Factors influencing biodegradation rates include polymer composition, environmental conditions (e.g., temperature, ultraviolet radiation (UV), and pH), and the presence of chemical additives. However, incomplete degradation can result in BMPs, potentially perpetuating their presence in the environment and posing risks to ecosystems and organisms. This review consolidates understanding the mechanisms governing biodegradation and BMP formation, which is imperative for evaluating their environmental consequences and devising effective strategies for managing plastic waste.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00959-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antioxidant mechanisms in salt-stressed Maize (Zea mays L.) seedlings: comparative analysis of tolerant and susceptible genotypes 盐胁迫玉米(Zea mays L.)幼苗抗氧化机制:耐盐和敏感基因型的比较分析
IF 2.3 3区 农林科学
Applied Biological Chemistry Pub Date : 2024-12-19 DOI: 10.1186/s13765-024-00963-x
Nusrat Jahan Methela, Mohammad Shafiqul Islam, Ashim Kumar Das, Hasan Uz Zaman Raihan, Md. Motiar Rohman, Abul Kashem Chowdhury, Bong-Gyu Mun
{"title":"Antioxidant mechanisms in salt-stressed Maize (Zea mays L.) seedlings: comparative analysis of tolerant and susceptible genotypes","authors":"Nusrat Jahan Methela,&nbsp;Mohammad Shafiqul Islam,&nbsp;Ashim Kumar Das,&nbsp;Hasan Uz Zaman Raihan,&nbsp;Md. Motiar Rohman,&nbsp;Abul Kashem Chowdhury,&nbsp;Bong-Gyu Mun","doi":"10.1186/s13765-024-00963-x","DOIUrl":"10.1186/s13765-024-00963-x","url":null,"abstract":"<div><p>Recent anthropogenic activities have spurred unparalleled environmental changes, among which elevated salinity levels emerge as a substantial threat to plant growth and development. This threat is characterized by oxidative stress, marked by the excessive generation of reactive oxygen species (ROS), proline accumulation, and lipid peroxidation. This study investigated the response of four maize (<i>Zea mays</i> L.) genotypes - two tolerant (9120 and Super Gold) and two susceptible (Pacific 984 and PS999) - to salinity-induced oxidative stress. Seedlings aged seven days were exposed to 12 dSm<sup>− 1</sup> salinity stress for five days, with various parameters including relative water content (RWC), ROS accumulation, proline levels, lipid peroxidation, lipoxigenase (LOX) activity, enzymatic and non-enzymatic antioxidants, and glyoxalases evaluated in fully expanded leaves. Susceptible genotypes exhibited higher RWC loss compared to tolerant genotypes, while proline accumulation was elevated in the latter. Enhanced ROS production (hydrogen peroxide and superoxide), melondialdehyde (MDA) levels, and LOX activity were observed in susceptible genotypes under salinity stress, along with increased oxidation of glutathione (GSH) and ascorbate (ASA) compared to tolerant genotypes. Enzymatic antioxidants such as superoxide dismutase (SOD), peroxidase (POD), glutathione peroxidase (GPX), and monodehydroascorbate reductase (MDHAR) displayed higher activity in tolerant genotypes, while catalase (CAT) activity was significantly different between tolerant and susceptible genotypes under salinity stress in maize. Conversely, elevated activities of ascorbate peroxidase (APX), glutathione S-transferase (GST), glutathione reductase (GR), and dehydroascorbate reductase (DHAR) were observed in both genotypes, indicating their crucial role in cellular protection against ROS and metabolites during salt stress. In short, plants have devised tactics to scavenge surplus Reactive Oxygen Species (ROS) and uphold cellular redox balance amidst oxidative stress. This study aims to offer basic knowledge regarding both enzymatic and nonenzymatic antioxidants, and the defense mechanisms they constitute against ROS detoxification upon salt stress conditions; furthermore, it also explores their interactions with cellular components.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00963-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AtGATA5 acts as a novel regulator in secondary cell wall biosynthesis by modulating NAC-domain transcription factors in Arabidopsis thaliana AtGATA5通过调节拟南芥nac结构域转录因子,在次生细胞壁生物合成中起着新的调节作用
IF 2.3 3区 农林科学
Applied Biological Chemistry Pub Date : 2024-12-18 DOI: 10.1186/s13765-024-00966-8
Byeonggyu Kim, Kihwan Kim, Won-Chan Kim
{"title":"AtGATA5 acts as a novel regulator in secondary cell wall biosynthesis by modulating NAC-domain transcription factors in Arabidopsis thaliana","authors":"Byeonggyu Kim,&nbsp;Kihwan Kim,&nbsp;Won-Chan Kim","doi":"10.1186/s13765-024-00966-8","DOIUrl":"10.1186/s13765-024-00966-8","url":null,"abstract":"<div><p>The plant cell wall is composed of a primary and secondary cell wall. The secondary cell wall (SCW) plays a crucial role in the movement of nutrients and water and serves as a barrier against pathogens and environmental stresses. However, the biosynthesis of the SCW is complex, involving a network of genes regulated by environmental factors, including light. In this study, we investigated the nuclear localization of AtGATA5 to determine its potential role as a transcription factor and its involvement in SCW formation. To explore changes in leaf phenotypes in overexpression <i>AtGATA5</i> and the thickening of interfascicular fiber cells, we conducted a transient activity assay using Arabidopsis protoplasts. The results demonstrated that <i>AtGATA5</i> can up-regulate NAC-domain transcription factors, which are master regulators of the SCW biosynthesis pathway. Furthermore, gene expression analysis in plants confirmed that as <i>AtGATA5</i> expression increased, the expression levels of NAC-domain transcription factors also increased. These findings suggest that <i>AtGATA5</i> plays a functional role in SCW formation by up-regulating master regulators in the SCW biosynthesis pathway. Overall, <i>AtGATA5</i> may act as a novel regulator of SCW biosynthesis, offering insights into potential application.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00966-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of bioactive compounds hepatotoxicity using in silico and in vitro analysis 生物活性化合物肝毒性预测的计算机和体外分析
IF 2.3 3区 农林科学
Applied Biological Chemistry Pub Date : 2024-12-17 DOI: 10.1186/s13765-024-00961-z
Kwanyong Choi, Soyeon Lee, Sunyong Yoo, Hyoung-Yun Han, Soo-yeon Park, Ji Yeon Kim
{"title":"Prediction of bioactive compounds hepatotoxicity using in silico and in vitro analysis","authors":"Kwanyong Choi,&nbsp;Soyeon Lee,&nbsp;Sunyong Yoo,&nbsp;Hyoung-Yun Han,&nbsp;Soo-yeon Park,&nbsp;Ji Yeon Kim","doi":"10.1186/s13765-024-00961-z","DOIUrl":"10.1186/s13765-024-00961-z","url":null,"abstract":"<div><p>The leading safety issue and side effect associated with natural herb products is drug-induced liver injury (DILI) caused by bioactive compounds derived from the herb products. Herein, in silico and in vitro analyses were compared to determine the hepatotoxicity of compounds. The results of in silico analyses, which included an integrated database and an interpretable DILI prediction model, identified calycosin, biochanin_A, xanthatin, piperine, and atractyloside as potential hepatotoxic compounds and tenuifolin as a non-hepatotoxic compound. To evaluate the viability of HepG2 cells exposed to the selected compounds, we determined the IC<sub>50</sub> and IC<sub>20</sub> values of viability using MTT assays. For in-depth screening, we performed hematoxylin and eosin-stained morphological screens, JC-1 mitochondrial assays, and mRNA microarrays. The results indicated that calycosin, biochanin_A, xanthatin, piperine, and atractyloside were potential hepatotoxicants that caused decreased viability and an apoptotic phase in morphology, while these effects were not observed for tenuifolin, a non-hepatotoxicant. In the JC-1 assay, apoptosis was induced by all the predicted hepatotoxicants except atractyloside. According to transcriptomic analysis, all the compounds predicted to induce DILI showed hepatotoxic effects. These results highlighted the importance of using in vitro assays to validate predictive in silico models and determine the potential of bioactive compounds to induce hepatotoxicity in humans.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00961-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信