{"title":"Bacillus megaterium GEB3 reduces accumulation of reactive oxygen species and enhances drought tolerance in peppers","authors":"Dongryeol Park, Jinwoo Jang, Geupil Jang","doi":"10.1186/s13765-025-00989-9","DOIUrl":"10.1186/s13765-025-00989-9","url":null,"abstract":"<div><p>Plant growth-promoting rhizobacteria regulate plant growth and stress tolerance by modulating endogenous developmental and physiological processes. This study examined the role of <i>Bacillus megaterium</i> GEB3 in affecting drought stress tolerance in peppers. GEB3 treatment significantly mitigated drought-induced symptoms, such as chlorosis, wilting, and leaf rolling, in both vegetative- and reproductive-stage peppers. For example, GEB3 treatment increased the number of fruits and total fruit weight by approximately 34% and 68%, respectively, compared to those in untreated control plants. We observed that GEB3 treatment reduces drought-induced reactive oxygen species (ROS) accumulation while increasing the transcriptional expression of antioxidant genes encoding <i>peroxidases</i> and <i>superoxide dismutases</i>, which are responsible for ROS removal. Furthermore, GEB3 activated the jasmonic acid (JA) response, and JA treatment alone was sufficient to reduce the accumulation of ROS and enhance pepper tolerance to drought stress. These findings suggest that <i>Bacillus megaterium</i> GEB3 increases drought tolerance in peppers through JA-mediated suppression of ROS accumulation, and may serve as a promising bioinoculant for improving crop tolerance against environmental stresses including drought.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"68 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-025-00989-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143830685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gi Jun Mun, Jin Su Kim, Chan Hyeok Lee, Han Yong Lee
{"title":"Strigolactone decreases ethylene biosynthesis in etiolated rice seedlings by reducing expression of OsACO genes","authors":"Gi Jun Mun, Jin Su Kim, Chan Hyeok Lee, Han Yong Lee","doi":"10.1186/s13765-025-00990-2","DOIUrl":"10.1186/s13765-025-00990-2","url":null,"abstract":"<div><p>In plants, developmental or environmental stresses activate a suite of different phytohormones that trigger biochemical and/or morphological adaptations. The gaseous phytohormone ethylene has a major effect on the plant life cycle from germination onward. Ethylene biosynthesis is tightly regulated by external and internal cues. In etiolated seedlings of Arabidopsis and rice, various phytohormones affect ethylene biosynthesis through transcriptional and/or post-transcriptional regulation of 1-aminocyclopropane-1-carboxylic acid (ACC), ACC synthases (ACS), and ACC oxidases (ACO). This study showed strigolactone also affected ethylene biosynthesis in dark-grown rice seedlings. Strigolactone treatment altered levels of <i>S-ADENOSYLMETHIONINE SYNTHASES</i> (OsSAMSs) and <i>ACC SYNTHASES</i> (OsACSs) transcripts, which encode enzymes involved in the initial steps of ethylene biosynthesis. The application of strigolactone reduced ethylene production, however, by decreasing transcription of <i>OsACO</i> genes, thus negatively affecting the final step of ethylene biosynthesis. In addition, treatment with strigolactone resulted in a phenotype in which the coleoptiles of dark-grown rice seedlings were shortened, contrary to treatment with ACC. These results reveal the tight correlation between strigolactone and ethylene biosynthesis.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"68 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-025-00990-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143809228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative efficacies of iron oxide-modified biochar and pyrite-modified biochar for simultaneous passivation of cadmium and arsenic in aqueous solutions and lettuce (Lactuca sativa. L) cultivation","authors":"Seo Yeon Kim, Jin Ju Lee, Goontaek Lee","doi":"10.1186/s13765-025-00988-w","DOIUrl":"10.1186/s13765-025-00988-w","url":null,"abstract":"<p>Effective simultaneous passivation of cationic (Cd) and anionic (As) heavy metal (metalloids) still is a critical environmental challenge. In this study, rice husk biochar was ball-milled with iron-based materials magnetite (Fe<sub>3</sub>O<sub>4</sub>) and pyrite (FeS<sub>2</sub>), then re-pyrolyzed at 600<sup>o</sup>C to produce modified biochars Fe<sub>3</sub>O<sub>4</sub>-BC and FeS<sub>2</sub>-BC respectively. Short-term removal performance was evaluated after 24 h adsorption in dual-element aqueous systems where Fe<sub>3</sub>O<sub>4</sub>-BC displayed Cd (99.62%) and As (62.39%) removal, and FeS<sub>2</sub>-BC displayed Cd (81.73%) and As (55.54%) removal, and BC displayed Cd (99.04%) and As (54.31%) removal. Tessier and Wenzel sequential extraction of Cd and As sorbed biochar solids revealed both modifications led to enhanced immobilization mechanisms (precipitation and complexation) absent in unmodified BC. XRD and FTIR spectra identified heavy metal precipitates and surface complexation respectively. Sorbed Cd, As was visualized with SEM-EDS. Long-term passivation effects were studied in co-contaminated soil systems with 1% (w/w) treatment with biochars, quantifying> soil-to-plant heavy metal translocation by bioconcentration factors in lettuce plant, shoot, and root. Differing passivation superiority was observed for each individual metal, where Fe<sub>,3,</sub>,O,<sub>,4,</sub>,-BC treatment led to lowest plant Cd BCF (70.77%) while FeS,<sub>,2,</sub>,-BC treatment resulted in lowest plant As BCF (65.72%),. Interestingly, in comparison to the control, application of unmodified BC led to,increased plant As BCF (101.03%),, suggesting biochar modification with inorganic iron materials leads to increased long-term stability by decelerating DOC release. Overall, Fe<sub>3</sub>O<sub>4</sub>-BC treatment appeared most effective in countering simultaneous Cd and As accumulation in edible lettuce portions,displaying shoot Cd BCF (35.33%) and shoot As BCF (9.17%).</p>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"68 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-025-00988-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Youping Wu, Sheng Zhang, Liqiang Gu, Cong Xu, Xiaobo Lin, Hu Wang
{"title":"Ginsenoside Rh2 regulates cardiomyocyte autophagy-dependent apoptosis through the PI3K-Akt-mTOR signaling pathway to attenuate doxorubicin-induced cardiotoxicity","authors":"Youping Wu, Sheng Zhang, Liqiang Gu, Cong Xu, Xiaobo Lin, Hu Wang","doi":"10.1186/s13765-025-00986-y","DOIUrl":"10.1186/s13765-025-00986-y","url":null,"abstract":"<div><p>Doxorubicin (DOX)-induced cardiotoxicity has become a major concern and is considered a limitation for the use of DOX in oncology treatment. Ginsenoside Rh2 (Rh2) is a ginseng extract with anti-inflammatory, antioxidant and cell cycle regulating activities. The aim of this study was to investigate the mechanism of cardioprotective effects of Rh2 in DOX-induced cardiotoxicity. This study utilized network pharmacology to search for potential targets and pathways of Rh2 against doxorubicin-induced heart failure. The mechanism of Rh2 protection of myocardial tissue was further examined using a doxorubicin-formed rat model of heart failure. Network pharmacology predicted 128 potential targets for Rh2 treating to heart failure. Autophagy and apoptosis pathways play critical roles in Rh2 treatment of heart failure accessed by GO and KEGG enrichment analysis. Animal experiment results showed that Rh2 attenuated DOX-induced cardiotoxicity, normalized the morphology of cardiac tissue and reduced cardiomyocyte autophagy as well as apoptosis by up-regulation of the PI3K-AKT-mTOR signaling pathway to antagonize the effect of DOX on cardiomyocyte damage. These results suggest that Rh2 was able to inhibit DOX-activated autophagy signaling and apoptotic pathways in myocardial tissues and reduced cardiomyocyte apoptosis. It has potential effects to protect myocardial tissue as well as antagonize DOX-induced cardiotoxicity.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"68 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-025-00986-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143793202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of methanol, fusel alcohols, and other volatile compounds of local specialty alcoholic beverages (wine, beer, and soju) in Korea","authors":"Dayoung Jeong, Young-Suk Kim","doi":"10.1186/s13765-024-00975-7","DOIUrl":"10.1186/s13765-024-00975-7","url":null,"abstract":"<div><p>The most commonly consumed local specialty alcoholic beverages in South Korea are wine, beer, and <i>soju</i>. These alcoholic beverages contain a wide variety of volatile components, including methanol and fusel alcohols, due to their different raw materials, manufacturing methods, and fermentative microorganisms. GC–MS combined with solid phase micro-extraction (SPME) was utilized to establish a simultaneous analytical method for methanol, fusel alcohols, and other volatile compounds in alcoholic beverages, which included 9 wine, 10 beer, and 10 <i>soju</i> samples. A total of 221 volatile compounds were identified, consisting of 6 acetals, 14 acids, 33 alcohols, 9 aldehydes, 2 amides, 13 benzene derivatives, 5 phenols, 81 esters, 8 furans, 16 ketones, 6 sulfides, 26 terpenes, 1 pyrazine, and 1 miscellaneous. Among the three types of alcoholic beverages, wine had the highest methanol content. In case of fusel alcohols, wine, beer, and <i>soju</i> contained 25, 16, and 14 alcohol components, respectively. In general, those main volatile components of wine, beer, and <i>soju</i> were esters, alcohols, and benzene derivatives. In beer, terpenes were detected at similar levels with alcohols. Volatile compounds contributing to the distinction between <i>soju</i> and beer were some alcohols, such as propan-1-ol, 2-methylpropan-1-ol, and 3-methylbutan-1-ol, and acids, such as octanoic acid, whereas wine samples were distinguished from other types of alcoholic beverages by some esters, such as methyl acetate, ethyl (E)-but-2-enoate, ethyl 3-hydroxybutanoate, and diethyl butanedioate, and some alcohols, such as hexan-1-ol, nonan-2-ol, and nonan-1-ol.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"68 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00975-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143553818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Na Lee, Sin Sil Kim, Dong Won Lee, Jae Hong Shim, Sang Ho Jeon, Ahn Sung Roh, Soon Ik Kwon, Dong-Cheol Seo, Seong Heon Kim
{"title":"Correction to: Characterization and application of Biochar derived from greenhouse crop by-products for soil improvement and crop productivity in South Korea","authors":"Yu Na Lee, Sin Sil Kim, Dong Won Lee, Jae Hong Shim, Sang Ho Jeon, Ahn Sung Roh, Soon Ik Kwon, Dong-Cheol Seo, Seong Heon Kim","doi":"10.1186/s13765-025-00984-0","DOIUrl":"10.1186/s13765-025-00984-0","url":null,"abstract":"","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"68 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-025-00984-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143513402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kyungha Lee, Seong Hee Bhoo, Sang-Won Lee, Man-Ho Cho
{"title":"Site-selective dimethylation of flavonoids using fusion flavonoid O-methyltransferases","authors":"Kyungha Lee, Seong Hee Bhoo, Sang-Won Lee, Man-Ho Cho","doi":"10.1186/s13765-025-00983-1","DOIUrl":"10.1186/s13765-025-00983-1","url":null,"abstract":"<div><p>Flavonoids are often decorated with methyl groups, which are catalyzed by flavonoid <i>O</i>-methyltransferases (FOMTs). Most FOMTs methylate flavonoids in a regiospecific manner. Because of the regiospecific nature of FOMTs, the synthesis of polymethoxyflavonoids is accomplished by multiple <i>O</i>-methylation steps. The multistep synthesis of dimethoxyflavonoids can be efficiently performed by a one-pot procedure using a multienzyme biocatalyst. For the one-pot production of dimethoxyflavonoids, fusion FOMTs were generated by the combination of two different regiospecific FOMTs. RdOMT10 (flavonoid 3-OMT), OsNOMT (flavonoid 7-OMT), and ObFOMT5 (flavonoid 4'-OMT) were used in the FOMT fusion. The fusion FOMTs (OsNOMT/ObFOMT5, OsNOMT/RdOMT10, and ObFOMT5/RdOMT10) were heterologously expressed in <i>Escherichia coli</i>. Activity assays of the recombinant fusion FOMTs demonstrated that OsNOMT/ObFOMT5, OsNOMT/RdOMT10, and ObFOMT5/RdOMT10 catalyze 7/4'-<i>O</i>-methylations, 7/3-<i>O</i>-methylations, and 4'/3-<i>O</i>-methylations of flavonoids, respectively. OsNOMT/ObFOMT5 and OsNOMT/RdOMT10 showed strong dimethylation activity towards diverse flavonoids and were therefore used in the site-selective bioconversion of flavonoids into dimethoxyflavonoids. The <i>E. coli</i> cells bearing OsNOMT/ObFOMT5 successfully converted flavonoids into 7,4'-dimethoxyflavonoids. The engineered <i>E. coli</i> expressing OsNOMT/RdOMT10 converted flavonoids into 3,7-dimethoxyflavonoids. This result indicates that the fusion FOMTs are useful multienzyme biocatalysts for the site-selective production of dimethoxyflavonoids by one-pot bioconversion.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"68 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-025-00983-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kenneth Happy, Sungyu Yang, Chang Ho Kang, Youngmin Kang
{"title":"The pharmacology, toxicology, and detoxification of Aconitum kusnezoffii Reichb., traditional and modern views","authors":"Kenneth Happy, Sungyu Yang, Chang Ho Kang, Youngmin Kang","doi":"10.1186/s13765-024-00971-x","DOIUrl":"10.1186/s13765-024-00971-x","url":null,"abstract":"<div><p><i>Aconitum kusnezoffii</i> Reichb. is a medicinal plant widely used in traditional Asian medicine, especially in Korea, for its potent pharmacological effects. However, its toxic alkaloids pose significant risk, making careful processing essential to reduce its toxicity. This study reviewed the plant’s processing methods, pharmacological activities, phytochemistry, toxicology, and detoxification techniques. Data from several databases, including Google scholar, PubMed, Scopus, Web science, peer-reviewed journal articles, classic herbal medicine books, and Allied and Complementary Medicine Database (AMED) were critically retrieved, organized and analyzed. The article’s findings indicate that, various ethnic groups in Asia have utilized different techniques, involving fire, water, or a combination of both to maximize the plant’s therapeutic potential and ensure safety. To date, more than 70 alkaloids, categorized into diterpenoids, norditerpenoids, and benzylisoquinolines, have been isolated from different plant’s parts (roots, leaves, stems, and flowers). These compounds exhibit various pharmacological activities including anti-inflammatory, analgesics, anti-cancer, anti-tumor, anti-arhythmic and pain-relieving properties. Despite its therapeutic potential, <i>A. kusenzoffii</i>. has narrow therapeutic window, meaning even small doses can be toxic. The study explored methods for reducing toxicity and detoxifying the herb emphasizing the importance of modern technologies such as propagation techniques, Systematic Evolution of Ligands by Exponential Enrichment (SELEX)-aptamer technology, and Chinmedomics in herbal medicine development. While research on this herb is extensive, gaps remain in clinical trials and efficacy studies. Further research is recommended to evaluate the quality of medicinal materials, understanding the herb’s pharmacodynamic substances, and assess long-term toxicity and clinical efficacy.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"68 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00971-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jae-Han Son, Seongmin Hong, Ji Won Kim, Jiyun Go, Junyong Choi, Sang-Bum Lee, Jun Young Ha, Young-Sam Go, Hwan-Hee Bae, Tae-Wook Jung, Gibum Yi
{"title":"Kernel type-based entries are efficient to develop a core collection of maize (Zea mays L.)","authors":"Jae-Han Son, Seongmin Hong, Ji Won Kim, Jiyun Go, Junyong Choi, Sang-Bum Lee, Jun Young Ha, Young-Sam Go, Hwan-Hee Bae, Tae-Wook Jung, Gibum Yi","doi":"10.1186/s13765-025-00981-3","DOIUrl":"10.1186/s13765-025-00981-3","url":null,"abstract":"<div><p>A core collection, a minimized set of germplasm representing maximum genetic diversity, is useful for breeding and genetic studies. Developing a core collection is essential for efficient genetic analysis. However, the process is time-consuming and requires considerable effort. Based on previous population structures of maize we hypothesized that kernel types can be representative characteristics encompassing large phenotypic variations. Here we showed that kernel type based entries are useful for developing a core collection representing large genetic variation. Based on genome-wide association studies (GWAS) of yellow kernel color and six yield related phenotypes, we found that y1 gene is responsible determinant of yellow color kernel and several genes were revealed to be involved in the yield-related phenotypes. The core collection was powerful to resolve the corresponding genetic components for the phenotypes. These results suggest that kernel types should be considered to include large genetic variation for developing a core collection in maize. This information will be facilitated to develop a new maize core collection.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"68 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-025-00981-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seul Ki Kim, Sang-Back Kim, Seul Bi Lee, Kang sub Kim, So-Ri Son, En Jin Choi, Byung Chul Park, Eunyoung Hong, You Ah Kim, Byoung Seok Moon, Sullim Lee
{"title":"Investigating the antioxidant and anti-inflammatory potential of Nypa fruticans: a multifaceted approach to skin protection and aging","authors":"Seul Ki Kim, Sang-Back Kim, Seul Bi Lee, Kang sub Kim, So-Ri Son, En Jin Choi, Byung Chul Park, Eunyoung Hong, You Ah Kim, Byoung Seok Moon, Sullim Lee","doi":"10.1186/s13765-024-00976-6","DOIUrl":"10.1186/s13765-024-00976-6","url":null,"abstract":"<div><p>Reactive oxygen species (ROS) produced in the mitochondria of skin cells play a significant role in the degradation of the extracellular matrix and induction of inflammatory responses, both of which are major contributors to skin aging. Antioxidants that reduce ROS production and inhibit inflammatory skin lesions are considered beneficial for the treatment of inflammatory skin diseases and prevention of skin aging. In this study, we evaluated the potential of <i>Nypa fruticans</i> (NF), which is known for its antioxidant properties, to mitigate tumor necrosis factor-alpha (TNF-α)- and interferon-gamma (IFN-γ)-induced damage in normal human epidermal keratinocytes. The major active constituents identified in NF include protocatechuic acid, hydroxybenzoic acid, procyanidin B, catechin, and epicatechin. NF significantly suppressed the production of ROS, nitric oxide (NO), and prostaglandin E2 (PGE<sub>2</sub>), while also reducing the levels of inflammatory cytokines interleukin-6 (IL-6) and interleukin-1 beta (IL-1β), which were elevated by TNF-α/IFN-γ stimulation. Furthermore, NF restored the expression of key skin barrier-related proteins such as serine peptidase inhibitor kazal type 5 (SPINK5), collagen type I alpha 1 chain (COLIA1), loricrin (LOR), aquaporin-3 (AQP3), and filaggrin (FLG). Additionally, NF significantly upregulated the expression of hyaluronan synthase (HAS) -1 and − 2 and human β-defensin (HBD) -2 and − 3, which are important for skin hydration and innate immune defense. These findings underscore the potential therapeutic applications of <i>Nypa fruticans</i> (NF) in mitigating oxidative stress, inflammation, skin barrier dysfunction, dehydration, and microbial imbalances. By targeting multiple pathways implicated in skin aging, NF represents a promising comprehensive approach for preserving skin health and addressing age-related dermatological conditions. Moreover, NF holds significant potential not only to alleviate the manifestations of skin aging but also to provide a basis for the development of innovative dermatological therapies. Future investigations should aim to further elucidate the clinical applications of NF in dermatology to maximize its therapeutic benefits.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"68 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00976-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}