{"title":"CsGeI3 Perovskite-Based Solar Cells for Higher Efficiency and Stability: An Experimental Investigation","authors":"Dolly Kumari;Nilesh Jaiswal;Deepak Punetha;Satyendra Kumar Mourya;Saurabh Kumar Pandey","doi":"10.1109/JPHOTOV.2025.3563882","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3563882","url":null,"abstract":"Among the recent developments in photovoltaic technologies, perovskite solar cells (PSCs) have drawn significant attention, owing to their exceptional power conversion efficiency (PCE), cost-effectiveness, and better optoelectronic characteristics. However, the stability and presence of lead (toxicity) in PSCs remains a major challenge to their commercialization. In this study, we experimentally investigated all-inorganic, lead-free CsGeI<sub>3</sub>-based PSCs in an n-i-p configuration. The CsGeI<sub>3</sub> films were synthesized using a one-step spin-coating technique and their crystallographic characteristics were analyzed. Furthermore, we fabricated and tested different device architectures incorporating CsGeI<sub>3</sub> as the absorber layer with various electron transport layers (ETLs), including TiO<sub>2</sub>, ZnO, and graphene oxide (GO), while employing MoS<sub>2</sub> as the hole transport layer. The resulting device structure was Fluorine doped Tin oxide (FTO)/(TiO<sub>2</sub>/ZnO/GO)/CsGeI<sub>3</sub>/MoS<sub>2</sub>/Ni). All fabricated devices demonstrated excellent performance, with the TiO<sub>2</sub>-based ETL device achieving the highest PCE of 10.79%. In addition, incorporating reduced graphene oxide (rGO) as an interface layer on top of the absorber layer further enhanced photovoltaic performance by approximately 3% across all configurations (achieving outstanding efficiency of 13.57%). The hydrophobic nature and high conductivity of rGO suggest its potential as a promising strategy for improving the stability and efficiency of lead-free PSCs in future applications.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 4","pages":"533-540"},"PeriodicalIF":2.5,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144331627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vertical Bifacial Photovoltaic System Model Validation: Study With Field Data, Various Orientations, and Latitudes","authors":"Erin Tonita;Silvana Ovaitt;Henry Toal;Karin Hinzer;Christopher Pike;Chris Deline","doi":"10.1109/JPHOTOV.2025.3561395","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3561395","url":null,"abstract":"Accurate modeling of photovoltaic (PV) systems is critical for the design, financial analysis, and monitoring of solar PV plants. For bifacial PV applications, models must additionally offer robust rear-side irradiance algorithms. However, bifacial PV irradiance models have yet to be sufficiently validated for east–west vertically oriented systems, where direct beam solar irradiation swaps at solar noon. Here, we validate five bifacial irradiance models with field data collected in Golden, CO, USA (40°N) and Fairbanks, AK, USA (65°N) for east–west vertical, north–south vertical, and south-tilted arrays. There is no clear best performer among subhourly models; Bifacial_radiance, bifacialVF, the System Advisor Model, and dual-sided energy tracer (DUET) comparably predict seasonal and daily changes in PV production, with root-mean-squared error (RMSE) falling in the range of 11–28% depending on the location and system orientation. PVSyst (v7.4.8), limited by hourly resolution, demonstrates RMSE in the range of 33–45%. The primary causes of high RMSE are similar for all models; using an irradiance cutoff of >100 W/m<sup>2</sup>, using clear-sky filtering, and removing time stamps with snow, lowers model RMSE to 4–13% for subhourly models and 12–25% for PVSyst. Regular meteorological station servicing is found to further decrease model RMSE by up to 3% abs. in Alaska. Finally, we model bifacial PV systems in over 250 locations between 15 and 85°N, finding that deviations between model-predicted annual insolation tend to be 2–3× higher for vertical PV systems than south-facing fixed-tilt systems. We discuss potential methods for improving vertical PV modeling and provide recommendations for high-quality field data collection in northern environments.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 4","pages":"600-609"},"PeriodicalIF":2.5,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10985871","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144331646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Novel Hosting Capacity Evaluation Method for Distributed PV Connected in Power System Based on Maximum Likelihood Estimation of Harmonic","authors":"Hongtao Shi;Jiahao Zhu;Yuchao Li;Zhenyang Yan;Tingting Chen;Bai Zhang","doi":"10.1109/JPHOTOV.2025.3541402","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3541402","url":null,"abstract":"Methods for fully characterizing the harmonic injection amount of distributed photovoltaic grid connection and combining harmonic constraints with other constraints to accurately evaluate the hosting capacity of photovoltaic integration into distribution networks are of great significance as they ensure the safe and stable operation of distribution networks. Therefore, a novel hosting capacity evaluation method for distributed photovoltaics (PVs) connected in a power system based on the maximum likelihood estimation of harmonics (MLE) is proposed in this study. First, using the likelihood function from the MLE method, the harmonic parameters of distributed photovoltaic injections are optimally estimated, allowing for the accurate assessment of harmonic outputs during photovoltaic grid connections. Furthermore, a harmonic partitioning method is devised; it characterizes the connection degree between nodes in the grid-connected system, and it divides the distribution network into regions. The scenario number in the estimation of hosting capacities is effectively reduced. Finally, a comparison is carried out relative to the conventional hosting capacity. The assessment method proposed in this study considers the harmonic access in the actual distributed PV grid-connected system. An improved harmonic partitioning method is established based on the harmonic injection amount. The evaluation of PV hosting capacities in the region ensures accuracy and reduces calculation times. They provide references for the access capacity of the distribution network.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 3","pages":"500-508"},"PeriodicalIF":2.5,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Call for Papers for a Special Issue of IEEE Transactions on Electron Devices","authors":"","doi":"10.1109/JPHOTOV.2025.3540337","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3540337","url":null,"abstract":"","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 2","pages":"375-376"},"PeriodicalIF":2.5,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10897236","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Call for Papers for a Special Issue of IEEE Transactions on Materials for Electron Devices","authors":"","doi":"10.1109/JPHOTOV.2025.3540335","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3540335","url":null,"abstract":"","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 2","pages":"373-374"},"PeriodicalIF":2.5,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10897241","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Announcing an IEEE/Optica Publishing Group Journal of Lightwave Technology Specail Issue","authors":"","doi":"10.1109/JPHOTOV.2025.3540329","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3540329","url":null,"abstract":"","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 2","pages":"377-377"},"PeriodicalIF":2.5,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10897244","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Journal of Photovoltaics Information for Authors","authors":"","doi":"10.1109/JPHOTOV.2025.3537263","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3537263","url":null,"abstract":"","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 2","pages":"C3-C3"},"PeriodicalIF":2.5,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10897242","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marco Nicoletto;Davide Panizzon;Alessandro Caria;Nicola Trivellin;Carlo De Santi;Matteo Buffolo;Gaudenzio Meneghesso;Enrico Zanoni;Matteo Meneghini
{"title":"Hail Damage Investigation in Heterojunction Silicon Photovoltaic Modules: A Real-World Case Study","authors":"Marco Nicoletto;Davide Panizzon;Alessandro Caria;Nicola Trivellin;Carlo De Santi;Matteo Buffolo;Gaudenzio Meneghesso;Enrico Zanoni;Matteo Meneghini","doi":"10.1109/JPHOTOV.2025.3539292","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3539292","url":null,"abstract":"Most photovoltaic (PV) modules are guaranteed for 25–30 years. However, severe climatic events, particularly hail, can lead premature damage. In this article, a residential PV system in Padova, Italy, was studied after exposure to a severe storm with hailstones up to 16 cm in diameter, which is more than two times larger than the standard size of test stones employed for module validation (7.5 cm, as per IEC 61215-2-2021). The goals are: 1) to demonstrate the relevance of hail testing beyond what currently required by the standards; 2) to demonstrate the presence of latent damage even in the absence of broken glass or of reduced performance; and 3) to discuss the associated risks. Forward bias electroluminescence (EL) and infrared (IR) radiation investigations were conducted in dark to minimize the impact of environmental influences. In the worst case, complete glass breakage results in solar cell fragmentation, which induces nonuniformity in current flow and thermal radiation, increasing losses, compromising electrical insulation, and requiring immediate replacement. In addition, dark and outdoor light current–voltage characteristics reveal significant decrease in output power, as well as increased leakage current. Remarkably, latent or invisible damage, detectable by reduced EL intensity and higher IR radiation, poses safety issues even in modules whose protective glass withstood the mechanical impact of hail. Modules with intact glass exhibit a decreased shunt resistance, with a negligible reduction in the output power with respect to a completely intact module. The results underline the necessity of inspecting the entire PV system following hailstorms, to detect any latent damages and promptly replace the damaged modules, even in the absence of glass breakage or reduction in the output power, to ensure long-term reliability.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 3","pages":"478-483"},"PeriodicalIF":2.5,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lelia Deville;Clifford W. Hansen;Kevin S. Anderson;Terrence L. Chambers;Marios Theristis
{"title":"Parameter Translation for Photovoltaic Single-Diode Models","authors":"Lelia Deville;Clifford W. Hansen;Kevin S. Anderson;Terrence L. Chambers;Marios Theristis","doi":"10.1109/JPHOTOV.2025.3539319","DOIUrl":"https://doi.org/10.1109/JPHOTOV.2025.3539319","url":null,"abstract":"In this article, we recommend methods to translate parameters between the PVsyst and California Energy Commission (CEC) single-diode models. Translation adds flexibility to photovoltaic performance modeling by enabling the use of the CEC database with the PVsyst model and PVsyst <italic>Panneau Solaire</i> files in the CEC model. We compare three approaches for translation and evaluate agreement between models using 21 unique modules of monocrystalline and polycrystalline silicon technologies and six climate datasets. The recommended approach yields the lowest normalized root-mean-square error for all module technologies, never exceeding 0.58% of rated power. Annual energy yields agree within 1.09% for all modules when using the optimization method. The recommended method will be proposed for inclusion in <italic>pvlib-python</i>.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 3","pages":"451-457"},"PeriodicalIF":2.5,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10893713","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}