垂直双面光伏系统模型验证:现场数据、不同方向和纬度的研究

IF 2.5 3区 工程技术 Q3 ENERGY & FUELS
Erin Tonita;Silvana Ovaitt;Henry Toal;Karin Hinzer;Christopher Pike;Chris Deline
{"title":"垂直双面光伏系统模型验证:现场数据、不同方向和纬度的研究","authors":"Erin Tonita;Silvana Ovaitt;Henry Toal;Karin Hinzer;Christopher Pike;Chris Deline","doi":"10.1109/JPHOTOV.2025.3561395","DOIUrl":null,"url":null,"abstract":"Accurate modeling of photovoltaic (PV) systems is critical for the design, financial analysis, and monitoring of solar PV plants. For bifacial PV applications, models must additionally offer robust rear-side irradiance algorithms. However, bifacial PV irradiance models have yet to be sufficiently validated for east–west vertically oriented systems, where direct beam solar irradiation swaps at solar noon. Here, we validate five bifacial irradiance models with field data collected in Golden, CO, USA (40°N) and Fairbanks, AK, USA (65°N) for east–west vertical, north–south vertical, and south-tilted arrays. There is no clear best performer among subhourly models; Bifacial_radiance, bifacialVF, the System Advisor Model, and dual-sided energy tracer (DUET) comparably predict seasonal and daily changes in PV production, with root-mean-squared error (RMSE) falling in the range of 11–28% depending on the location and system orientation. PVSyst (v7.4.8), limited by hourly resolution, demonstrates RMSE in the range of 33–45%. The primary causes of high RMSE are similar for all models; using an irradiance cutoff of >100 W/m<sup>2</sup>, using clear-sky filtering, and removing time stamps with snow, lowers model RMSE to 4–13% for subhourly models and 12–25% for PVSyst. Regular meteorological station servicing is found to further decrease model RMSE by up to 3% abs. in Alaska. Finally, we model bifacial PV systems in over 250 locations between 15 and 85°N, finding that deviations between model-predicted annual insolation tend to be 2–3× higher for vertical PV systems than south-facing fixed-tilt systems. We discuss potential methods for improving vertical PV modeling and provide recommendations for high-quality field data collection in northern environments.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 4","pages":"600-609"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10985871","citationCount":"0","resultStr":"{\"title\":\"Vertical Bifacial Photovoltaic System Model Validation: Study With Field Data, Various Orientations, and Latitudes\",\"authors\":\"Erin Tonita;Silvana Ovaitt;Henry Toal;Karin Hinzer;Christopher Pike;Chris Deline\",\"doi\":\"10.1109/JPHOTOV.2025.3561395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate modeling of photovoltaic (PV) systems is critical for the design, financial analysis, and monitoring of solar PV plants. For bifacial PV applications, models must additionally offer robust rear-side irradiance algorithms. However, bifacial PV irradiance models have yet to be sufficiently validated for east–west vertically oriented systems, where direct beam solar irradiation swaps at solar noon. Here, we validate five bifacial irradiance models with field data collected in Golden, CO, USA (40°N) and Fairbanks, AK, USA (65°N) for east–west vertical, north–south vertical, and south-tilted arrays. There is no clear best performer among subhourly models; Bifacial_radiance, bifacialVF, the System Advisor Model, and dual-sided energy tracer (DUET) comparably predict seasonal and daily changes in PV production, with root-mean-squared error (RMSE) falling in the range of 11–28% depending on the location and system orientation. PVSyst (v7.4.8), limited by hourly resolution, demonstrates RMSE in the range of 33–45%. The primary causes of high RMSE are similar for all models; using an irradiance cutoff of >100 W/m<sup>2</sup>, using clear-sky filtering, and removing time stamps with snow, lowers model RMSE to 4–13% for subhourly models and 12–25% for PVSyst. Regular meteorological station servicing is found to further decrease model RMSE by up to 3% abs. in Alaska. Finally, we model bifacial PV systems in over 250 locations between 15 and 85°N, finding that deviations between model-predicted annual insolation tend to be 2–3× higher for vertical PV systems than south-facing fixed-tilt systems. We discuss potential methods for improving vertical PV modeling and provide recommendations for high-quality field data collection in northern environments.\",\"PeriodicalId\":445,\"journal\":{\"name\":\"IEEE Journal of Photovoltaics\",\"volume\":\"15 4\",\"pages\":\"600-609\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10985871\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Photovoltaics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10985871/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10985871/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

光伏(PV)系统的精确建模对于太阳能光伏电站的设计、财务分析和监测至关重要。对于双面光伏应用,模型必须另外提供强大的后侧辐照度算法。然而,双面PV辐射模型尚未充分验证东西向垂直定向系统,其中直接光束太阳辐射在太阳正午交换。在这里,我们用在美国科罗拉多州Golden(40°N)和美国AK州Fairbanks(65°N)收集的五种双面辐照度模型验证了东西垂直、南北垂直和南倾斜阵列的现场数据。在亚小时模型中没有明确的最佳表现;Bifacial_radiance、bifacialVF、System Advisor Model和dual-sided energy tracer (DUET)可以比较地预测PV产量的季节和每日变化,根据位置和系统方向的不同,均方根误差(RMSE)在11-28%的范围内下降。PVSyst (v7.4.8)受每小时分辨率的限制,显示RMSE在33-45%的范围内。高均方根误差的主要原因在所有模型中都是相似的;使用bbb100 W/m2的辐照度截止值,使用晴空过滤,并去除有雪的时间戳,将亚小时模型的RMSE降低到4-13%,PVSyst降低到12-25%。发现定期的气象站服务使阿拉斯加的模型均方根误差进一步降低了3%。最后,我们在北纬15°至85°之间的250多个地点对双面光伏系统进行了建模,发现垂直光伏系统的模型预测年日照量之间的偏差往往比朝南固定倾斜系统高2 - 3倍。我们讨论了改进垂直PV建模的潜在方法,并为北方环境中高质量的现场数据收集提供了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vertical Bifacial Photovoltaic System Model Validation: Study With Field Data, Various Orientations, and Latitudes
Accurate modeling of photovoltaic (PV) systems is critical for the design, financial analysis, and monitoring of solar PV plants. For bifacial PV applications, models must additionally offer robust rear-side irradiance algorithms. However, bifacial PV irradiance models have yet to be sufficiently validated for east–west vertically oriented systems, where direct beam solar irradiation swaps at solar noon. Here, we validate five bifacial irradiance models with field data collected in Golden, CO, USA (40°N) and Fairbanks, AK, USA (65°N) for east–west vertical, north–south vertical, and south-tilted arrays. There is no clear best performer among subhourly models; Bifacial_radiance, bifacialVF, the System Advisor Model, and dual-sided energy tracer (DUET) comparably predict seasonal and daily changes in PV production, with root-mean-squared error (RMSE) falling in the range of 11–28% depending on the location and system orientation. PVSyst (v7.4.8), limited by hourly resolution, demonstrates RMSE in the range of 33–45%. The primary causes of high RMSE are similar for all models; using an irradiance cutoff of >100 W/m2, using clear-sky filtering, and removing time stamps with snow, lowers model RMSE to 4–13% for subhourly models and 12–25% for PVSyst. Regular meteorological station servicing is found to further decrease model RMSE by up to 3% abs. in Alaska. Finally, we model bifacial PV systems in over 250 locations between 15 and 85°N, finding that deviations between model-predicted annual insolation tend to be 2–3× higher for vertical PV systems than south-facing fixed-tilt systems. We discuss potential methods for improving vertical PV modeling and provide recommendations for high-quality field data collection in northern environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Photovoltaics
IEEE Journal of Photovoltaics ENERGY & FUELS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.00
自引率
10.00%
发文量
206
期刊介绍: The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信