基于CsGeI3钙钛矿的高效稳定太阳能电池的实验研究

IF 2.5 3区 工程技术 Q3 ENERGY & FUELS
Dolly Kumari;Nilesh Jaiswal;Deepak Punetha;Satyendra Kumar Mourya;Saurabh Kumar Pandey
{"title":"基于CsGeI3钙钛矿的高效稳定太阳能电池的实验研究","authors":"Dolly Kumari;Nilesh Jaiswal;Deepak Punetha;Satyendra Kumar Mourya;Saurabh Kumar Pandey","doi":"10.1109/JPHOTOV.2025.3563882","DOIUrl":null,"url":null,"abstract":"Among the recent developments in photovoltaic technologies, perovskite solar cells (PSCs) have drawn significant attention, owing to their exceptional power conversion efficiency (PCE), cost-effectiveness, and better optoelectronic characteristics. However, the stability and presence of lead (toxicity) in PSCs remains a major challenge to their commercialization. In this study, we experimentally investigated all-inorganic, lead-free CsGeI<sub>3</sub>-based PSCs in an n-i-p configuration. The CsGeI<sub>3</sub> films were synthesized using a one-step spin-coating technique and their crystallographic characteristics were analyzed. Furthermore, we fabricated and tested different device architectures incorporating CsGeI<sub>3</sub> as the absorber layer with various electron transport layers (ETLs), including TiO<sub>2</sub>, ZnO, and graphene oxide (GO), while employing MoS<sub>2</sub> as the hole transport layer. The resulting device structure was Fluorine doped Tin oxide (FTO)/(TiO<sub>2</sub>/ZnO/GO)/CsGeI<sub>3</sub>/MoS<sub>2</sub>/Ni). All fabricated devices demonstrated excellent performance, with the TiO<sub>2</sub>-based ETL device achieving the highest PCE of 10.79%. In addition, incorporating reduced graphene oxide (rGO) as an interface layer on top of the absorber layer further enhanced photovoltaic performance by approximately 3% across all configurations (achieving outstanding efficiency of 13.57%). The hydrophobic nature and high conductivity of rGO suggest its potential as a promising strategy for improving the stability and efficiency of lead-free PSCs in future applications.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 4","pages":"533-540"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CsGeI3 Perovskite-Based Solar Cells for Higher Efficiency and Stability: An Experimental Investigation\",\"authors\":\"Dolly Kumari;Nilesh Jaiswal;Deepak Punetha;Satyendra Kumar Mourya;Saurabh Kumar Pandey\",\"doi\":\"10.1109/JPHOTOV.2025.3563882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the recent developments in photovoltaic technologies, perovskite solar cells (PSCs) have drawn significant attention, owing to their exceptional power conversion efficiency (PCE), cost-effectiveness, and better optoelectronic characteristics. However, the stability and presence of lead (toxicity) in PSCs remains a major challenge to their commercialization. In this study, we experimentally investigated all-inorganic, lead-free CsGeI<sub>3</sub>-based PSCs in an n-i-p configuration. The CsGeI<sub>3</sub> films were synthesized using a one-step spin-coating technique and their crystallographic characteristics were analyzed. Furthermore, we fabricated and tested different device architectures incorporating CsGeI<sub>3</sub> as the absorber layer with various electron transport layers (ETLs), including TiO<sub>2</sub>, ZnO, and graphene oxide (GO), while employing MoS<sub>2</sub> as the hole transport layer. The resulting device structure was Fluorine doped Tin oxide (FTO)/(TiO<sub>2</sub>/ZnO/GO)/CsGeI<sub>3</sub>/MoS<sub>2</sub>/Ni). All fabricated devices demonstrated excellent performance, with the TiO<sub>2</sub>-based ETL device achieving the highest PCE of 10.79%. In addition, incorporating reduced graphene oxide (rGO) as an interface layer on top of the absorber layer further enhanced photovoltaic performance by approximately 3% across all configurations (achieving outstanding efficiency of 13.57%). The hydrophobic nature and high conductivity of rGO suggest its potential as a promising strategy for improving the stability and efficiency of lead-free PSCs in future applications.\",\"PeriodicalId\":445,\"journal\":{\"name\":\"IEEE Journal of Photovoltaics\",\"volume\":\"15 4\",\"pages\":\"533-540\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Photovoltaics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10988679/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10988679/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在光伏技术的最新发展中,钙钛矿太阳能电池(PSCs)因其卓越的功率转换效率(PCE)、成本效益和良好的光电特性而备受关注。然而,PSCs的稳定性和铅(毒性)的存在仍然是其商业化的主要挑战。在这项研究中,我们实验研究了n-i-p结构下的全无机无铅csgei3基psc。采用一步自旋镀膜技术合成了CsGeI3薄膜,并对其晶体学特性进行了分析。此外,我们制作并测试了以CsGeI3为吸收层,以各种电子传输层(etl),包括TiO2, ZnO和氧化石墨烯(GO),而以MoS2为空穴传输层的不同器件架构。器件结构为氟掺杂氧化锡(FTO)/(TiO2/ZnO/GO)/CsGeI3/MoS2/Ni)。所有制备的器件均表现出优异的性能,其中二氧化钛基ETL器件的PCE最高,达到10.79%。此外,将还原氧化石墨烯(rGO)作为吸收层顶部的界面层,在所有配置中进一步提高了约3%的光伏性能(达到13.57%的出色效率)。氧化石墨烯的疏水性和高导电性表明,在未来的应用中,它有可能成为提高无铅psc稳定性和效率的一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CsGeI3 Perovskite-Based Solar Cells for Higher Efficiency and Stability: An Experimental Investigation
Among the recent developments in photovoltaic technologies, perovskite solar cells (PSCs) have drawn significant attention, owing to their exceptional power conversion efficiency (PCE), cost-effectiveness, and better optoelectronic characteristics. However, the stability and presence of lead (toxicity) in PSCs remains a major challenge to their commercialization. In this study, we experimentally investigated all-inorganic, lead-free CsGeI3-based PSCs in an n-i-p configuration. The CsGeI3 films were synthesized using a one-step spin-coating technique and their crystallographic characteristics were analyzed. Furthermore, we fabricated and tested different device architectures incorporating CsGeI3 as the absorber layer with various electron transport layers (ETLs), including TiO2, ZnO, and graphene oxide (GO), while employing MoS2 as the hole transport layer. The resulting device structure was Fluorine doped Tin oxide (FTO)/(TiO2/ZnO/GO)/CsGeI3/MoS2/Ni). All fabricated devices demonstrated excellent performance, with the TiO2-based ETL device achieving the highest PCE of 10.79%. In addition, incorporating reduced graphene oxide (rGO) as an interface layer on top of the absorber layer further enhanced photovoltaic performance by approximately 3% across all configurations (achieving outstanding efficiency of 13.57%). The hydrophobic nature and high conductivity of rGO suggest its potential as a promising strategy for improving the stability and efficiency of lead-free PSCs in future applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Photovoltaics
IEEE Journal of Photovoltaics ENERGY & FUELS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.00
自引率
10.00%
发文量
206
期刊介绍: The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信