Tropical Cyclone Research and Review最新文献

筛选
英文 中文
Projections of future tropical cyclone landfalling activity in the East Asia region 东亚地区未来热带气旋登陆活动预测
IF 2.4 4区 地球科学
Tropical Cyclone Research and Review Pub Date : 2024-12-01 DOI: 10.1016/j.tcrr.2024.11.004
Kin Sik Liu , Johnny C.L. Chan , Bruce Chong , Homan Wong
{"title":"Projections of future tropical cyclone landfalling activity in the East Asia region","authors":"Kin Sik Liu ,&nbsp;Johnny C.L. Chan ,&nbsp;Bruce Chong ,&nbsp;Homan Wong","doi":"10.1016/j.tcrr.2024.11.004","DOIUrl":"10.1016/j.tcrr.2024.11.004","url":null,"abstract":"<div><div>This study reveals the possible future changes in tropical cyclone (TC) landfalling activity along the East Asian coast under different climate change scenarios based on global circulation model (GCM) simulations. We first identify those GCMs that have the “best” performance in simulating the TC activity over the western North Pacific (WNP) during the current climate (1979–2014) by examining the simulated TCs in each of the GCMs and then compare these simulated TCs with the observed TC climatological features of annual frequency, track densities and genesis locations. Based on such comparisons, we have identified five (TaiESM1, EC-Earth3, ACCESS-CM2, ACCESS-ESM1-5 and HadGEM3-GC31-LL) models among all the available GCMs. A multi-model ensemble gives a further improvement when compared with observations.</div><div>Future projections from some of these models are then used to identify the frequency of TC activity over the entire WNP as well as landfalling TCs in six East Asia coastal regions under two climate change scenarios (SSP2-4.5 and SSP5-8.5) for two periods, 2041-70 and 2071-2100. A bias-correction method is also applied to the projected intensity of these landfalling TCs to estimate the landfall intensity.</div><div>In general, these GCMs project a possible decrease in TC genesis frequency over the entire WNP, consistent with the results of most of the other studies. At mid-century, decreases in TC genesis frequency are projected to be around 10% for both scenarios. Towards the end of the century, the decreases will be more significant, with the percentage changes of 14.9% (SSP2-4.5) and 22.4% (SSP5-8.5). For landfalling TCs, the northern part of the East Asian coast will likely have an increase in frequency, ranging from 17 to 60% but a decrease of 14–27% in the southern part. In general, the average intensity of landfalling TCs will likely increase although the percentages are not large, ranging from 2 to 14%.</div></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"13 4","pages":"Pages 328-343"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143307920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sub-seasonal variability of tropical cyclone landfall characteristics on the west coast of the Bay of Bengal during October–December: The role of La Niña and El Niño 10 - 12月孟加拉湾西海岸热带气旋登陆特征的分季节变化:La Niña和El Niño的作用
IF 2.4 4区 地球科学
Tropical Cyclone Research and Review Pub Date : 2024-12-01 DOI: 10.1016/j.tcrr.2024.11.005
Anupama Sahoo , M.S. Girishkumar
{"title":"Sub-seasonal variability of tropical cyclone landfall characteristics on the west coast of the Bay of Bengal during October–December: The role of La Niña and El Niño","authors":"Anupama Sahoo ,&nbsp;M.S. Girishkumar","doi":"10.1016/j.tcrr.2024.11.005","DOIUrl":"10.1016/j.tcrr.2024.11.005","url":null,"abstract":"<div><div>Tropical cyclones (TCs) create more disasters when they make landfall. Climatologically, the west coast of the Bay of Bengal (BoB), one of the most densely populated geographical regions over the globe, is more vulnerable to TC landfall during the primary TC season (October–December), with around 72% of TCs originating in the BoB making landfall on the west coast of BoB (WCBoB). However, the evidence for reliable interannual modulation of sub-seasonal variability on landfalling TCs during the primary TC season in the BoB has been explored less. Here, we used the 35 years (1988–2022) of best TC track data from the BoB to investigate this aspect. Those TCs that made landfall on the WCBoB indicate a significant meridional shift between the first and second half of the primary TC season in the La Niña regime, with 93% (83%) of TC formed in the first (second) half of the season making landfall in the north WCBoB (south WCBoB). Our study reveals that the meridional shift in genesis location and difference in steering flow between the first and second halves of the season is principally responsible for the sub-seasonal variability of landfall location in the La Niña regime, in which former characteristics seem to be determined by southward propagation of Genesis Potential Index (GPI). GPI magnitude is lower in the El Niño regime than in the La Niña regime during the primary TC season, resulting in lower TC activity without sub-seasonal variability in the landfall characteristics in the BoB.</div></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"13 4","pages":"Pages 276-285"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143354297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hindcasting the typhoon haiyan storm surge in coastal eastern leyte 台风海燕在leyte东部沿海风暴潮的后预报
IF 2.4 4区 地球科学
Tropical Cyclone Research and Review Pub Date : 2024-12-01 DOI: 10.1016/j.tcrr.2024.11.001
Jeferson Zerrudo, Sharon Juliet Arruejo
{"title":"Hindcasting the typhoon haiyan storm surge in coastal eastern leyte","authors":"Jeferson Zerrudo,&nbsp;Sharon Juliet Arruejo","doi":"10.1016/j.tcrr.2024.11.001","DOIUrl":"10.1016/j.tcrr.2024.11.001","url":null,"abstract":"<div><div>This study introduces the ‘Zero-Point Boundary’ method to map the 2013 Typhoon Haiyan storm surge in coastal eastern Leyte. Utilising the ‘Rivera Dispersive Wave Model’ or RDM, we interpolated simulated storm surge and wave height data, subtracting them from a 5-m resolution digital terrain model raster provided by the National Mapping and Resource Information Authority (NAMRIA) to determine inundation limits and depths relative to the average Filipino male height (i.e., 165 cm). Validation against the 2013 joint survey conducted by the Japan Society of Civil Engineers (JSCE) and the Philippine Institute of Civil Engineers (PICE) showed an 81 % accuracy rate when identifying water limit locations in Tacloban City, suggesting potential for future forecasting. However, the absence of compound flooding consideration in the simulations may have influenced this rate. Overall, this study underscores the importance of accurate modelling and communication in hazard mapping for enhancing preparedness and mitigation efforts, emphasising a balanced approach to risk perception.</div></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"13 4","pages":"Pages 293-327"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143307918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the impact of tropical cyclones on economic sectors in Costa Rica, Central America 评估热带气旋对中美洲哥斯达黎加经济部门的影响
IF 2.4 4区 地球科学
Tropical Cyclone Research and Review Pub Date : 2024-09-01 DOI: 10.1016/j.tcrr.2024.08.001
Adolfo Quesada-Román , Hugo G. Hidalgo , Eric J. Alfaro
{"title":"Assessing the impact of tropical cyclones on economic sectors in Costa Rica, Central America","authors":"Adolfo Quesada-Román ,&nbsp;Hugo G. Hidalgo ,&nbsp;Eric J. Alfaro","doi":"10.1016/j.tcrr.2024.08.001","DOIUrl":"10.1016/j.tcrr.2024.08.001","url":null,"abstract":"<div><div>Tropical cyclones (TC) pose a persistent natural hazard to Costa Rica. Exposure to natural hazards, such as mass movements and floods, is compounded by a growing urban population and inadequate land use planning. This study conducted a comprehensive analysis of the economic impacts of TC of Costa Rica from Hurricane Joan in 1988 to Hurricane Eta in 2020, assessing the impact by municipality and economic sector using baseline information of the Ministry of National Planning and Economic Policy. According to the study, road infrastructure (933.8 US million), agriculture (280.5 US million), river rehabilitation (153.96 US million), housing 98.26 (US million), and health (81.74 US million) were among the sectors most severely affected by TC over the past 30 years. The Pacific basin municipalities in Costa Rica were found to be the most vulnerable, primarily due to the indirect impacts of TC. The study's results offer useful information on the economic sectors and municipalities that are most exposed from TC in Costa Rica and provide a replicable methodology for other regions and countries facing similar tropical phenomena.</div></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"13 3","pages":"Pages 196-207"},"PeriodicalIF":2.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A theoretical method to characterize the resistance effects of nonflat terrain on wind fields in a parametric wind field model for tropical cyclones 在热带气旋风场参数模型中描述非平坦地形对风场阻力影响的理论方法
IF 2.4 4区 地球科学
Tropical Cyclone Research and Review Pub Date : 2024-09-01 DOI: 10.1016/j.tcrr.2024.08.002
Gengjiao Ye , Pingzhi Fang , Hui Yu
{"title":"A theoretical method to characterize the resistance effects of nonflat terrain on wind fields in a parametric wind field model for tropical cyclones","authors":"Gengjiao Ye ,&nbsp;Pingzhi Fang ,&nbsp;Hui Yu","doi":"10.1016/j.tcrr.2024.08.002","DOIUrl":"10.1016/j.tcrr.2024.08.002","url":null,"abstract":"<div><div>Traditionally, an empirical speed-up factor was introduced to reflect the effects of nonflat terrain on near-surface wind speeds. In this paper, the resistance effects of nonflat terrain are considered by introducing the terrain drag coefficient in the parametric wind field model for tropical cyclones (TCs) with a theoretical method. Terrain effects on wind fields are investigated in complex areas along the coastal zone in China under TC conditions. The results show that the terrain drag coefficient is the function of the slope angle and is sensitive to the spatial resolution. After including the resistance effect of nonflat terrain, the TC intensities weaken overall during landfall, with a slight enhancement near the coastal zone. The wind speeds outside the radius of the maximum wind speed decrease, while the wind speeds within the radius of the maximum wind speed increase. Both the TC eye and the radius of maximum wind speed shrink, which is more obvious when the TC center is entirely over land. As a result, the location and magnitude of the maximum wind speed are affected by the nonflat terrain. The changed structure of the wind fields demonstrates the necessity of considering the effects of nonflat terrain in simulating the wind fields under TC conditions.</div></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"13 3","pages":"Pages 161-174"},"PeriodicalIF":2.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of heavy rainfall area between landfalling typhoon LUPIT (2109) and typhoon LISA (9610) 登陆台风 "鲁碧"(2109 年)与台风 "丽莎"(9610 年)暴雨面积对比分析
IF 2.4 4区 地球科学
Tropical Cyclone Research and Review Pub Date : 2024-09-01 DOI: 10.1016/j.tcrr.2024.08.006
Zhiming Feng , Chenfei Liao , Jinyu Zeng
{"title":"Comparative analysis of heavy rainfall area between landfalling typhoon LUPIT (2109) and typhoon LISA (9610)","authors":"Zhiming Feng ,&nbsp;Chenfei Liao ,&nbsp;Jinyu Zeng","doi":"10.1016/j.tcrr.2024.08.006","DOIUrl":"10.1016/j.tcrr.2024.08.006","url":null,"abstract":"<div><div>Based on the ERA5 reanalysis data and the surface observations from automatic weather stations, a comparative analysis has been conducted to investigate the differences in heavy rainfall distributions caused by two landfalling tropical cyclones (TCs): LUPIT (2109) and LISA (9610). The two TCs have similar tracks, intensity and landing points, but show different asymmetric features in their rainstorm location relative to their tracks. The results indicate that the TC rainfall differences are mainly caused by different rainstorm formation mechanisms. The wind shear contributes most to the rainstorm of LISA, while land-sea contrast and topographical effect are the main factors of LUPIT rainstorm. Under the influence of strong environmental vertical wind shear and the weak cold air invasion from the west, the circulation center of LISA tilts westward with height, which cooperates with the low-level water vapor convergence and vertical ascending movement on the western side of the TC center to jointly cause the heavy rainstorm to the west of LISA center. In contrast, LUPIT has weak environmental vertical wind shear and no obvious structure tilting with height. Topographic effect plays a crucial role in causing the heavy rainstorm on the north of TC center. The southeasterly jet is blocked by the Taimu Mountain in the northeastern Fujian Province, and the strong ascending motion caused by the terrain-induced convergence appears to the north of LUPIT center. In addition, the moisture convergence is more pronounced in the north and weaker in the south. The intrusion of weak cold air from the east to the coastal areas of central-northern Fujian, and the moisture-convergence distribution, jointly cause the heavy rainstorm to the north of LUPIT.</div></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"13 3","pages":"Pages 175-186"},"PeriodicalIF":2.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variations in gust factor with wind direction and height based on the measurements from a coastal tower during three landfalling typhoons 根据沿海塔在三次登陆台风期间的测量结果得出的阵风系数随风向和高度的变化情况
IF 2.4 4区 地球科学
Tropical Cyclone Research and Review Pub Date : 2024-09-01 DOI: 10.1016/j.tcrr.2024.08.005
Pingzhi Fang , Tao Huo , Junjun Pan , Guihan Luan
{"title":"Variations in gust factor with wind direction and height based on the measurements from a coastal tower during three landfalling typhoons","authors":"Pingzhi Fang ,&nbsp;Tao Huo ,&nbsp;Junjun Pan ,&nbsp;Guihan Luan","doi":"10.1016/j.tcrr.2024.08.005","DOIUrl":"10.1016/j.tcrr.2024.08.005","url":null,"abstract":"<div><div>Using high-frequency onshore wind data from four different heights of a coastal tower, the variations in gust factor with turbulence intensity, height and wind speed were studied under typhoon conditions. The gust factor increases with increasing turbulence intensity and, most often, can be described by a linear relationship with the turbulence intensity. The gust factor decreases with height and is relatively small compared with those presented in the national codes and other studies. A value of 2.5 is acceptable for the peak factor, which is close to the recommended value of the national code in China. The gust factor increases with increasing wind speed and is also affected by the wind direction. The gust factor has a value to that of previously published results when the wind flows roughly perpendicular to the shoreline, and has a smaller value when the wind flows roughly parallel to the shoreline. The phenomenon is caused by the confinement of shoreline on the sea wave development. Sea waves tend to propagate normal to the shoreline because of the refraction effect. As a result, a shorter roughness length exists in the parallel direction to the shoreline. It can be further explained by the weakness in the momentum flux exchange between the air and sea based on the wave form drag theory when the wind flows parallel to the shoreline.</div></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"13 3","pages":"Pages 187-195"},"PeriodicalIF":2.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discussion on the enhancement of Typhoon Committee activities for UN EW4All initiative 讨论加强台风委员会为联合国全民教育倡议开展的活动
IF 2.4 4区 地球科学
Tropical Cyclone Research and Review Pub Date : 2024-09-01 DOI: 10.1016/j.tcrr.2024.08.004
Yihong DUAN, Jinping LIU, Clarence FONG, Michael FU
{"title":"Discussion on the enhancement of Typhoon Committee activities for UN EW4All initiative","authors":"Yihong DUAN,&nbsp;Jinping LIU,&nbsp;Clarence FONG,&nbsp;Michael FU","doi":"10.1016/j.tcrr.2024.08.004","DOIUrl":"10.1016/j.tcrr.2024.08.004","url":null,"abstract":"<div><div>The ESCAP/WMO Typhoon Committee is an intergovernmental regional organization dealing with typhoon (tropical cyclones) related disasters. Millions of people around the Asia-Pacific region remain exposed to a higher frequency and intensity of natural hazards. For more developed countries, tropical cyclone related impacts cause major social and economic disruptions through loss of lives and property. With recognizing the importance of aligning its efforts with UN Early Warnings for All (EW4All) initiative which aims to strengthen early warning systems globally, Typhoon Committee resolved to initiate the monitoring of ongoing or past efforts by TC Members in contributing to the four key pillars of the EW4all initiative aiming to (1) evaluate the Committee's contributions to EW4All; and (2) identify the opportunities for enhancing performance through Member Reports and the WGs’ AOP specification. TC had its 18th IWS/4th TRCG forum with a theme of “Early Warnings for All Through Enhancement of Typhoon Standard Operating Procedures (SOP)” and “Towards a Typhoon Resilient Society”; TC Secretary (TCS) initiated a reviewing and monitoring on the ongoing or previous efforts of TC Members, through analyzing the AOPs’ implementation of TC WGs, in contributing to the pillars of the EW4All initiative with the objective of enabling an evaluation of the Committee's contributions to EW4All and identify opportunities for further enhancing its performance. This paper intends to discuss the directions on how to further enhance TC activities aligning with and contribution to EW4All in future.</div></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"13 3","pages":"Pages 208-218"},"PeriodicalIF":2.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of characteristics and evaluation of forecast accuracy for Super Typhoon Doksuri (2023) 超强台风 "杜苏芮"(2023 年)的特征分析和预报精度评估
IF 2.4 4区 地球科学
Tropical Cyclone Research and Review Pub Date : 2024-09-01 DOI: 10.1016/j.tcrr.2024.09.001
Rong Guo , Runling Yu , Mengqi Yang , Guomin Chen , Chen Chen , Peiyan Chen , Xin Huang , Xiping Zhang
{"title":"Analysis of characteristics and evaluation of forecast accuracy for Super Typhoon Doksuri (2023)","authors":"Rong Guo ,&nbsp;Runling Yu ,&nbsp;Mengqi Yang ,&nbsp;Guomin Chen ,&nbsp;Chen Chen ,&nbsp;Peiyan Chen ,&nbsp;Xin Huang ,&nbsp;Xiping Zhang","doi":"10.1016/j.tcrr.2024.09.001","DOIUrl":"10.1016/j.tcrr.2024.09.001","url":null,"abstract":"<div><div>Super Typhoon Doksuri is a significant meteorological challenge for China this year due to its strong intensity and wide influence range, as well as significant and prolonged hazards. In this work, we studied Doksuri's main characteristics and assessed its forecast accuracy meticulously based on official forecasts, global models and regional models with lead times varying from 1 to 5 days. The results indicate that Typhoon Doksuri underwent rapid intensification and made landfall at 09:55 BJT on July 28 with a powerful intensity of 50 m s<sup>−1</sup> confirmed by the real-time operational warnings issued by China Meteorological Administration (CMA). The typhoon also caused significant wind and rainfall impacts, with precipitation at several stations reaching historical extremes, ranking eighth in terms of total rainfall impact during the event. The evaluation of forecast accuracy for Doksuri suggests that Shanghai Multi-model Ensemble Method (SSTC) and Fengwu Model are the most effective for short-term track forecasts. Meanwhile, the forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) and United Kingdom Meteorological Office (UKMO) are optimal for long-term predictions. It is worth noting that objective forecasts systematically underestimate the typhoon maximum intensity. The objective forecast is terribly poor when there is a sudden change in intensity. CMA-National Digital Forecast System (CMA-NDFS) provides a better reference value for typhoon accumulated rainfall forecasts, and regional models perform well in forecasting extreme rainfall. The analyses above assist forecasters in pinpointing challenges within typhoon predictions and gaining a comprehensive insight into the performance of each model. This improves the effective application of model products.</div></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"13 3","pages":"Pages 219-229"},"PeriodicalIF":2.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Case study of high waves in the South Pacific generated by Tropical Cyclone Harold in 2020 2020 年热带气旋哈罗德在南太平洋掀起巨浪的案例研究
IF 2.4 4区 地球科学
Tropical Cyclone Research and Review Pub Date : 2024-09-01 DOI: 10.1016/j.tcrr.2024.08.003
Amit Singh , Nadao Kohno , Hironori Fudeyasu
{"title":"Case study of high waves in the South Pacific generated by Tropical Cyclone Harold in 2020","authors":"Amit Singh ,&nbsp;Nadao Kohno ,&nbsp;Hironori Fudeyasu","doi":"10.1016/j.tcrr.2024.08.003","DOIUrl":"10.1016/j.tcrr.2024.08.003","url":null,"abstract":"<div><div>This study highlighted a high wave case by severe tropical cyclone Harold and conducted a simulation with a newly developed wave forecasting system for the South Pacific based on the Japan Meteorological Agency third generation wave model (JMA MRI-III) using the National Center for Environment Prediction Global Forecast System (GFS) winds. Harold was a very intense tropical cyclone (TC) and very high waves up to 10 m affected parts of Vanuatu and Fiji. The model results were reasonable and verified against observations of orbital satellites and a wave buoy at Komave in Fiji. The statistical verifications were carefully analysed. The Root Mean Squared Error (RSME), Scatter Index (SI), Bias and R<sup>2</sup> are all showing very impressive results. The new wave forecasting system is the first high resolution operational model at Fiji Meteorological Service (FMS), which covers the whole Fiji area. The system will provide guidance to FMS in preparing marine alerts and warning better and more confidence in providing the marine forecast accurately.</div></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"13 3","pages":"Pages 147-160"},"PeriodicalIF":2.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信