在热带气旋风场参数模型中描述非平坦地形对风场阻力影响的理论方法

IF 2.4 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
{"title":"在热带气旋风场参数模型中描述非平坦地形对风场阻力影响的理论方法","authors":"","doi":"10.1016/j.tcrr.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><div>Traditionally, an empirical speed-up factor was introduced to reflect the effects of nonflat terrain on near-surface wind speeds. In this paper, the resistance effects of nonflat terrain are considered by introducing the terrain drag coefficient in the parametric wind field model for tropical cyclones (TCs) with a theoretical method. Terrain effects on wind fields are investigated in complex areas along the coastal zone in China under TC conditions. The results show that the terrain drag coefficient is the function of the slope angle and is sensitive to the spatial resolution. After including the resistance effect of nonflat terrain, the TC intensities weaken overall during landfall, with a slight enhancement near the coastal zone. The wind speeds outside the radius of the maximum wind speed decrease, while the wind speeds within the radius of the maximum wind speed increase. Both the TC eye and the radius of maximum wind speed shrink, which is more obvious when the TC center is entirely over land. As a result, the location and magnitude of the maximum wind speed are affected by the nonflat terrain. The changed structure of the wind fields demonstrates the necessity of considering the effects of nonflat terrain in simulating the wind fields under TC conditions.</div></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A theoretical method to characterize the resistance effects of nonflat terrain on wind fields in a parametric wind field model for tropical cyclones\",\"authors\":\"\",\"doi\":\"10.1016/j.tcrr.2024.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traditionally, an empirical speed-up factor was introduced to reflect the effects of nonflat terrain on near-surface wind speeds. In this paper, the resistance effects of nonflat terrain are considered by introducing the terrain drag coefficient in the parametric wind field model for tropical cyclones (TCs) with a theoretical method. Terrain effects on wind fields are investigated in complex areas along the coastal zone in China under TC conditions. The results show that the terrain drag coefficient is the function of the slope angle and is sensitive to the spatial resolution. After including the resistance effect of nonflat terrain, the TC intensities weaken overall during landfall, with a slight enhancement near the coastal zone. The wind speeds outside the radius of the maximum wind speed decrease, while the wind speeds within the radius of the maximum wind speed increase. Both the TC eye and the radius of maximum wind speed shrink, which is more obvious when the TC center is entirely over land. As a result, the location and magnitude of the maximum wind speed are affected by the nonflat terrain. The changed structure of the wind fields demonstrates the necessity of considering the effects of nonflat terrain in simulating the wind fields under TC conditions.</div></div>\",\"PeriodicalId\":44442,\"journal\":{\"name\":\"Tropical Cyclone Research and Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical Cyclone Research and Review\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2225603224000407\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603224000407","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

传统上,为了反映非平坦地形对近地面风速的影响,会引入一个经验加速因子。本文采用理论方法,在热带气旋参数风场模式中引入地形阻力系数,考虑了非平坦地形的阻力效应。研究了 TC 条件下中国沿海复杂地区地形对风场的影响。结果表明,地形阻力系数是坡角的函数,对空间分辨率敏感。在计入非平坦地形的阻力效应后,登陆期间 TC 强度总体减弱,沿海地带附近略有增强。最大风速半径外的风速减小,而最大风速半径内的风速增大。热气旋眼和最大风速半径都在缩小,这在热气旋中心完全位于陆地上空时更为明显。因此,最大风速的位置和大小受到非平坦地形的影响。风场结构的变化表明,在模拟 TC 条件下的风场时,有必要考虑非平坦地形的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A theoretical method to characterize the resistance effects of nonflat terrain on wind fields in a parametric wind field model for tropical cyclones
Traditionally, an empirical speed-up factor was introduced to reflect the effects of nonflat terrain on near-surface wind speeds. In this paper, the resistance effects of nonflat terrain are considered by introducing the terrain drag coefficient in the parametric wind field model for tropical cyclones (TCs) with a theoretical method. Terrain effects on wind fields are investigated in complex areas along the coastal zone in China under TC conditions. The results show that the terrain drag coefficient is the function of the slope angle and is sensitive to the spatial resolution. After including the resistance effect of nonflat terrain, the TC intensities weaken overall during landfall, with a slight enhancement near the coastal zone. The wind speeds outside the radius of the maximum wind speed decrease, while the wind speeds within the radius of the maximum wind speed increase. Both the TC eye and the radius of maximum wind speed shrink, which is more obvious when the TC center is entirely over land. As a result, the location and magnitude of the maximum wind speed are affected by the nonflat terrain. The changed structure of the wind fields demonstrates the necessity of considering the effects of nonflat terrain in simulating the wind fields under TC conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tropical Cyclone Research and Review
Tropical Cyclone Research and Review METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
3.40%
发文量
184
审稿时长
30 weeks
期刊介绍: Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome. Scope of the journal includes: • Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies • Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings • Basic theoretical studies of tropical cyclones • Event reports, compelling images, and topic review reports of tropical cyclones • Impacts, risk assessments, and risk management techniques related to tropical cyclones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信