Waseem Khalid, Hyrije Koraqi, Imed E Benmebarek, Andrés Moreno, Tawfiq Alsulami, Robert Mugabi, Gulzar Ahmad Nayik
{"title":"Optimization of UAE-NADES green extraction of bioactive compounds from chickpea (Cicer arietinum L.) sprouts using simplex lattice mixture design methodology.","authors":"Waseem Khalid, Hyrije Koraqi, Imed E Benmebarek, Andrés Moreno, Tawfiq Alsulami, Robert Mugabi, Gulzar Ahmad Nayik","doi":"10.1016/j.ultsonch.2024.107186","DOIUrl":"https://doi.org/10.1016/j.ultsonch.2024.107186","url":null,"abstract":"<p><p>In the present study, a statistical tool called the simplex lattice mixture design method was used to create a new formulation of Natural Deep Eutectic Solvent (NADES), which is derived from a combination of three compounds (citric acid, glycerol, and water) to extract bioactive compounds from chickpea (Cicer arietinum L.) sprouts. The mixture (natural deep eutectic solvent) was formulated by combining three solvents including citric acid, glycerol, and water. The extraction was performed in a sonication bath for 30 min. The simultaneous optimization was performed to obtain the highest total polyphenol content (TPC), total flavonoid content (TFC) and antioxidants activity. The highest values of total polyphenol content (TPC), total flavonoid content (TFC) and antioxidant activity were 128.0 ± 0.2 mg GAE/100 g, 38.61 ± 0.03 mg CE/100 g and 2117 ± 1.8 µmol TE/100 g respectively. HPLC-DAD of the optimized extract was utilized for quantification of polyphenol compounds showing catechin as the main compound followed by chlorogenic acid, epicatechin, syringic acid, rutin, gallic acid, kaempferol 3-glucoside, ferulic acid, and coumaric acid. These findings may represent a significant advancement in the management of phenolic compound extraction for targeted uses, such as serving as alternatives to traditional antioxidants primarily employed in the food industry to improve nutritional quality. Furthermore, our research has shown that mixture designs are an efficient and useful method for structuring and optimizing experimental parameters to achieve the most accurate results with the minimum number of experiments.</p>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"112 ","pages":"107186"},"PeriodicalIF":8.7,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guihong Han, Zhen Chen, Ningdan Cui, Shuzhen Yang, Yanfang Huang, Bingbing Liu, Hu Sun
{"title":"Boosting effect of ultrasonication on the oxygen evolution reaction during zinc electrowinning.","authors":"Guihong Han, Zhen Chen, Ningdan Cui, Shuzhen Yang, Yanfang Huang, Bingbing Liu, Hu Sun","doi":"10.1016/j.ultsonch.2024.107183","DOIUrl":"https://doi.org/10.1016/j.ultsonch.2024.107183","url":null,"abstract":"<p><p>In this study, the electrochemical and anodic behaviors of Pb-Ag anodes during ultrasound-assisted zinc electrowinning were meticulously examined. The oxygen evolution reaction (OER) occurring at the Pb-Ag anodes in a 150 g L<sup>-1</sup> aqueous H<sub>2</sub>SO<sub>4</sub> solution was studied in the absence (silent) and presence of ultrasonication (40 kHz, 100 % acoustic amplitude). Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), linear sweep voltammetry (LSV), and zinc electrowinning tests were conducted to analyze the electrochemical behavior of the Pb-Ag anodes during zinc electrowinning. Compared with that under silent conditions, the OER was greatly enhanced under ultrasonic conditions, and the overpotential reduction was found to be 108 mV at 35 °C at a current density of 50 mA cm<sup>-2</sup>. A significant reduction in the bath voltage was achieved during ultrasound-assisted prolonged zinc electrowinning, with a difference of approximately 50 mV compared with that of the control. The integration of ultrasonic technology into the realm of zinc electrowinning leverages the physical and chemical effects of ultrasonication to significantly improve the efficiency and kinetics of the OER. Smaller PbO<sub>2</sub> grains and a larger silver exposure area appeared on the Pb-Ag plate surface during ultrasonic-assisted electrowinning, which is beneficial for the OER chemically. The generated oxygen bubbles merged more rapidly and detached from the electrode surface with greater alacrity under ultrasonication conditions, which reinforced the OER in terms of mass transfer kinetics. Furthermore, more fine zinc products can be obtained during ultrasound-assisted zinc electrowinning. By harnessing the power of ultrasonic technology, more sustainable and cost-effective zinc electrowinning can be achieved.</p>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"112 ","pages":"107183"},"PeriodicalIF":8.7,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A comparative study on monitoring of bioactive compound production/degradation, volatile substances, and oxidation indices during horn and bath high-power ultrasound-assisted oil bleaching.","authors":"Mehran Sayadi, Elahe Abedi, Malihe Keramat","doi":"10.1016/j.ultsonch.2024.107184","DOIUrl":"https://doi.org/10.1016/j.ultsonch.2024.107184","url":null,"abstract":"<p><p>This research aimed to investigate and compare the effect of bath and horn ultrasound-assisted bleaching of sunflower oilon the degradation of tocopherols and sterols, production of volatile substances, and oxidation indices, including thiobarbituric acid (TBA) and peroxide value (PV) and with that of the industrial bleaching process. Ultrasonic bath and ultrasonic horn bleaching techniques reduced sunflower oil's total tocopherol and total sterol contents to a greater extent than conventional bleaching techniques. While bath and horn sonication operated theoretically equivalent power settings, power meter measurements demonstrated that the bath sonicator delivered significantly less power than the horn sonicator. Among the ultrasonic bleaching techniques, the ultrasonic bath at 400 W showed the lowest reduction in total tocopherols,sterols and volatile compounds compared to the ultrasonic horn technique at the same theoritical power. Moreover, Despite the 800 W bath sonicator having significantly higher nominal power than the 400 W horn sonicator, the horn sonicator was considerably more effective at degrading bioactive compounds. Higher degradation of bioactive compounds coincided with increasing patterns in primary and secondary oxidation indices and volatile compounds in horn compared to bath and industrial bleaching due to the direct effect of ultrasonic horn and free radical formations.</p>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"112 ","pages":"107184"},"PeriodicalIF":8.7,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aunzar Bashir Lone , Hina F. Bhat , Sunil Kumar , Abderrahmane Aït-Kaddour , Rana Muhammad Aadil , Abdo Hassoun , Zuhaib F. Bhat
{"title":"Cricket protein-based film containing Caralluma fimbriata extract-based nanoparticles for preservation of cheddar cheese","authors":"Aunzar Bashir Lone , Hina F. Bhat , Sunil Kumar , Abderrahmane Aït-Kaddour , Rana Muhammad Aadil , Abdo Hassoun , Zuhaib F. Bhat","doi":"10.1016/j.ultsonch.2024.107167","DOIUrl":"10.1016/j.ultsonch.2024.107167","url":null,"abstract":"<div><div>A bioactive film was developed using cricket (<em>Acheta domestica</em>) protein (Cric-Prot) and <em>Caralluma fimbriata</em> extract-based nanoparticles [Car-Fim-NPs (0.0, 1.0, 2.0, and 3.0 % w/v)] to augment the storage stability and functional value of cheddar cheese (Ched-Chee). The Car-Fim-NPs were developed using an ultrasonication-mediated (20 kHz, 500 W, 10 min, pulse duration of 5/5 s on/off) green method. The addition of Car-Fim-NPs modified the film characteristics [density (%), WVTR (mg/mt<sup>2</sup>), transmittance (%), elongation at break (%), and colour (L*, a*, b*)] and enhanced its antioxidant [DPPH, ABTS and FRAP activities, total phenolic and flavonoid contents, and antioxidant release (%)] and antimicrobial (inhibitory halos against <em>E. coli</em> and <em>S. aureus</em>) potential. Application of the films containing Car-Fim-NPs (1.0–3.0 %) increased the antioxidant potential (DPPH, ABTS and FRAP activities), lipid (TBARS and free fatty acids) and protein (total carbonyl content) oxidative stability, and microbial quality (microbial counts) of the Ched-Chee during 90 days of storage. The sensory quality of Ched-Chee showed a significant increase after day 30 till the storage end. Gastrointestinal digestion simulation augmented the antioxidant potential of Ched-Chee. Overall, the results indicate the possibility of the<!--> <!-->use of<!--> <!-->Cric-Prot-based film containing Car-Fim-NPs to enhance the<!--> <!-->storage quality of Ched-Chee.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"112 ","pages":"Article 107167"},"PeriodicalIF":8.7,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Feng Han, Jialin Song, Mingming Qi, Yueming Li, Mei Xu, Xin Zhang, Chuangshuo Yan, Shanfeng Chen, Hongjun Li
{"title":"Improving the quality of steamed bread with whole soybean pulp: Effects of ultrasonic treatment on protein structure and reduction of beany flavor","authors":"Feng Han, Jialin Song, Mingming Qi, Yueming Li, Mei Xu, Xin Zhang, Chuangshuo Yan, Shanfeng Chen, Hongjun Li","doi":"10.1016/j.ultsonch.2024.107156","DOIUrl":"10.1016/j.ultsonch.2024.107156","url":null,"abstract":"<div><div>Incorporation of whole soybean pulp (WSP) into wheat flour has been shown to improve the nutritional profile of steamed bread. However, this substitution often disrupts the protein network and introduces an undesirable beany flavor, compromising the overall quality of the steamed bread. This research explored the impacts of varying ultrasonic power levels on the quality of steamed bread containing WSP (WSPSB), with the goal of improving both the protein network structure and the flavor profile. The findings indicated that at an ultrasonic power of 300 W, WSPSB had an 18.10 % decrease in hardness and a 14.93 % increase in specific volume compared to the 0 W. Results from CLSM, SDS-PAGE, fluorescence intensity, surface hydrophobicity, and FTIR spectroscopy revealed that ultrasonic treatment modified the secondary protein structure by increasing the proportion of β-sheets and random coils. These changes facilitated better integration of soybean protein and gluten, thereby strengthening the steamed bread’s protein network. Furthermore, analyses of volatile flavor components, molecular docking, and correlation studies indicated that alterations in the protein structure mitigated the binding of beany flavor components to proteins, leading to significant reductions in their presence—specifically, a 7.12 % decrease in 1-Octen-3-ol and an 8.47 % decrease in Furan, 2-pentyl-. Overall, ultrasound treatment effectively refined the protein network and mitigated the beany flavor in steamed bread, thereby improving its quality.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"112 ","pages":"Article 107156"},"PeriodicalIF":8.7,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Amplifying Bioactivity of blue honeysuckle (Lonicera caerulea L.) fruit puree through Ultrasonication: Antioxidant and antiproliferative activity.","authors":"Wei Wu, Xiumei Ma, Yingqi Wang, Yating Yu, Junwei Huo, Dejian Huang, Xiaonan Sui, Yan Zhang","doi":"10.1016/j.ultsonch.2024.107179","DOIUrl":"https://doi.org/10.1016/j.ultsonch.2024.107179","url":null,"abstract":"<p><p>Blue honeysuckle (Lonicera caerulea L.) serves as a significant reservoir of polyphenol compounds. This impact of ultrasonication processing on the bioaccessibility of blue honeysuckle fruit puree during in vitro digestion was evaluated. The polyphenol compounds, antioxidant capacity and antiproliferative activity were measured, with a particular focus on determining the total proanthocyanidin content of the puree during digestion. The results revealed that the U300 W treatment significantly increased antioxidant content and enhanced the stability of antioxidant capacity, leading to stronger antiproliferative activity. A total of 33 compounds, including 14 phenolic acids, 5 flavanols, 1 flavanol-3-ol, 1 flavanone alcohol, 3 flavanones, 1 flavanone, and 8 non- polyphenols were found in both untreated and ultrasonicated puree during in vitro digestion. The untreated puree contained 22 compounds, while the ultrasonicated puree contained 33. Compared to untreated samples, ultrasonicated samples contained significantly higher levels of loganic acid, dihydrokaempferol, kaempferol derivatives, and plantagoside. Except for vanillic acid, citric acid, protocatechuic acid, and luteolin-4'-O-glucoside, the polyphenols showed a decreasing trend during oral-gastric-small intestinal-colon digestion. The U500 W ultrasonicated fruit puree exhibited the strongest antiproliferative activity. Overall, the results demonstrated that ultrasonication has the potential to enhance the bioaccessibility of antioxidant compounds and the antiproliferative activity of blue honeysuckle fruit puree.</p>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"112 ","pages":"107179"},"PeriodicalIF":8.7,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lin Chen , Bingzhi Chen , Lulu Chu , Lili Chen , Luyu Xie , Youjin Deng , Yuji Jiang
{"title":"The storage quality and transcriptome analysis of fresh-cut taro by L-ascorbic acid combined with ultrasonic treatment","authors":"Lin Chen , Bingzhi Chen , Lulu Chu , Lili Chen , Luyu Xie , Youjin Deng , Yuji Jiang","doi":"10.1016/j.ultsonch.2024.107178","DOIUrl":"10.1016/j.ultsonch.2024.107178","url":null,"abstract":"<div><div>Fresh-cut taro, renowned for its high nutritional value and convenience, is prone to rapid browning post-cutting, which hinders its storage life. This study focused on the effects of L-ascorbic acid (AA) combined with ultrasound (US) treatment (AS) on the storage quality and transcriptome analysis of fresh-cut slices of Yongding June Red Taro. Compared to the control (CK) group, AS treatment effectively reduced the weight loss rate of taro slices, maintained higher hardness, delayed the increase of browning, and inhibited the accumulation of O<sub>2</sub><sup>−</sup> and H<sub>2</sub>O<sub>2</sub>. Furthermore, the AS group showed increased glutathione levels and maintained higher activities of ascorbate peroxidase and glutathione reductase, yet decreased the contents of flavonoids and reducing sugars. Simultaneously, in the AS group, the activities of tyrosinase and lipoxygenase were lowered, thereby preserving the high sensory quality of fresh-cut taro slices. Transcriptome analysis revealed that differentially expressed genes (DEGs) between the AS and CK groups were annotated and categorized into 50 and 20 functional groups based on the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. Notably, both groups exhibited significant enrichment in processes related to photosynthesis, protein processing in the endoplasmic reticulum, and isoflavone biosynthesis. Therefore, we concluded that AS treatment could alleviate oxidative stress and maintain storage quality by regulating metabolic pathways. These findings provide insights into the physiological changes occurring in taro immediately after cutting and serve as an essential basis for developing effective storage and preservation techniques.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"112 ","pages":"Article 107178"},"PeriodicalIF":8.7,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142744419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruyu Zhang , Wangang Zhang , Xuan Dong , Meng Wai Woo , Siew Young Quek
{"title":"Modification of hempseed protein isolate using a novel two-stage method applying high-pressure homogenization coupled with high-intensity ultrasound","authors":"Ruyu Zhang , Wangang Zhang , Xuan Dong , Meng Wai Woo , Siew Young Quek","doi":"10.1016/j.ultsonch.2024.107177","DOIUrl":"10.1016/j.ultsonch.2024.107177","url":null,"abstract":"<div><div>Hempseed protein isolate (HPI), a novel plant protein, possesses advantages as an alternative food protein from a nutritional and sustainable perspective. This study investigated HPI modification by examining the effects of high-pressure homogenization combined with high-intensity ultrasound (HPH + HIU) on the physicochemical and functionality of HPI. Firstly, the optimal homogenization pressure (180 MPa) was selected based on the solubility and particle size of HPI. Then, the effect of ultrasonic treatment time (2, 5, and 10 min) was studied at the optimal homogenization pressure. The results showed increased solubility of HPI after all treatments. Particularly, the HPH + HIU<sub>2min</sub> treatment had a synergistic effect that maximumly increased the solubility of HPI from 6.88 % to 22.89 % at neutral pH. This treatment significantly decreased the HPI’s particle size, β-sheet and total sulfhydryl contents while maximizing the random coil level, intrinsic fluorescence intensity and surface hydrophobicity compared to the single HPH or HIU<sub>2min</sub> treatments. The protein structure was modified and unfolded, enhancing the water-protein and oil-protein interactions, as reflected in the increase in water and oil absorption, foaming and emulsifying properties. However, extending the ultrasonic time to 5 min for the HPH + HIU treatment increased protein particle size and weakened the functional properties of HPI. Further prolonging the ultrasonic time to 10 min partially loosened the protein aggregates and restored the functional properties of HPI to some extent. The findings indicate a promising application of HPH + HIU as an efficient way for HPI modification to facilitate its broader application in the food industry.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"112 ","pages":"Article 107177"},"PeriodicalIF":8.7,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reza Roohi, Seyed Mohammad Bagher Hashemi, Mohammad Reza Zarrinpour Balaei
{"title":"Synergist effect of thermosonication and NaCl on inactivation of Staphylococcus aureus and Shigella flexneri in lettuce: The effect of acoustic field and reaction kinetics.","authors":"Reza Roohi, Seyed Mohammad Bagher Hashemi, Mohammad Reza Zarrinpour Balaei","doi":"10.1016/j.ultsonch.2024.107161","DOIUrl":"https://doi.org/10.1016/j.ultsonch.2024.107161","url":null,"abstract":"<p><p>The study aimed to investigate the effect of thermosonication (TS; 37 KHz, 300 W; 30, 40, 50, and 60 °C for 10 min) and NaCl (12 % w/v) on the inactivation of Staphylococcus aureus and Shigella flexneri in lettuce, as well as to examine the kinetics of inactivation and the thermodynamic behaviors of the process. Computational Fluid Dynamics (CFD) simulations were employed to analyze the acoustic pressure field, velocity contours, and streamlines. The results showed that NaCl addition had the least impact on inactivation compared to TS and combined NaCl + TS. Increasing the temperature led to higher inactivation of both bacteria, with a more significant effect at 60 °C. Thermosonication treatment had a more consistent effect on inactivation compared to the addition of NaCl. When exposed to thermosonication, the population of S. aureus and S. flexneri could be reduced by 5.1 to 6.9 log CFU/g and 5.5 to 7.4 log CFU/g, respectively, at temperature levels of 30 and 60 °C. Additionally, no significant relationship between entropy reduction and type of microorganisms was observed. The samples that were treated only with NaCl had higher energy absorption than the other samples.</p>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"112 ","pages":"107161"},"PeriodicalIF":8.7,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mian Shamas Murtaza , Sanabil Yaqoob , Bismillah Mubeen , Aysha Sameen , Mian Anjum Murtaza , Abdur Rehman , Tawfiq Alsulami , Sameh A. Korma , Ibrahim Khalifa , Yong Kun Ma
{"title":"Investigating the triple-frequency ultrasound-assisted fermented rice lees: Impact on physicochemical, structural, morphological, and metabolic properties","authors":"Mian Shamas Murtaza , Sanabil Yaqoob , Bismillah Mubeen , Aysha Sameen , Mian Anjum Murtaza , Abdur Rehman , Tawfiq Alsulami , Sameh A. Korma , Ibrahim Khalifa , Yong Kun Ma","doi":"10.1016/j.ultsonch.2024.107176","DOIUrl":"10.1016/j.ultsonch.2024.107176","url":null,"abstract":"<div><div>This study examined the effect of triple-frequency ultrasound treatment (TFUT)-assisted lactic acid bacteria (LAB-<em>L. plantarum</em> and <em>L. helveticus</em> fermentation for 24-h and 48-h) on the chemical, structural, morphological, metabolic, and sensory properties of rice lees (RL). Ultrasonicated-assisted RL fermented with <em>L. helveticus</em> (URLH-48) had the greatest total phenolic contents (TPC) (112.1 mg GAE/m), total flavonoid contents (TFC) (163.62 mg RE/mL), and proanthocyanidin contents (PAC) (728.34 mg/mL) compared to RL (control) and other treatments. Furthermore, URLH-48 demonstrated an increase in the concentrations of quinic acid (486.96 mg/L) and gallic acid (201.42 mg/L), as determined by HPLC-UV analysis. Additionally, FTIR spectral analyses demonstrated that TFUT-assisted fermented RL exhibited a greater degree of flexibility and mobility in its secondary structures compared to RL (control). The amino acid’s profile of RL was significantly increased as LAB degraded the RL proteins, and the function of TFUT facilitates bacterial activity. Moreover, SEM observation provides convincing evidence that TFUT improves and speeds up the breakdown of proteins’ structures, resulting in irregular and dense structures. Correlation and molecular docking research suggest that TFUT has different impacts on specific RL and fermented RL characteristics. The analyses conducted using GC–MS and E-nose indicated the generation of highly volatile flavor compounds through fermentation. The sensory evaluation results show an increase in liking following fermentation and TFUT-assisted fermentation, which is attributed to the production of flavor compounds. Consequently, the combined use of TFUT-assisted fermentation markedly improves the polyphenolic composition, antioxidant capacity, flavor profile, micromorphology, and overall quality of RL, which may enhance their functionality and broaden their applications in the food industry.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"112 ","pages":"Article 107176"},"PeriodicalIF":8.7,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}