Gianmaria Viciconte , Varaha P. Sarvothaman , Paolo Guida , Tadd T. Truscott , William L. Roberts
{"title":"喇叭型超声反应器的高速成像和香豆素剂量测定:探头直径和振幅的影响","authors":"Gianmaria Viciconte , Varaha P. Sarvothaman , Paolo Guida , Tadd T. Truscott , William L. Roberts","doi":"10.1016/j.ultsonch.2025.107362","DOIUrl":null,"url":null,"abstract":"<div><div>Ultrasound driven cavitation is widely used to intensify lab and industrial-scale processes. Various studies and experiments demonstrate that the acoustic energy, dissipated through the bubbles collapse, leads to intense physico-chemical effects in the processed liquid. A better understanding of these phenomena is crucial for the optimization of ultrasonic reactors, and their scale-up. In the current literature, the visual characterization of the reactor is mainly carried out with sonoluminescence and sonochemiluminescence. These techniques have limitations in the time resolution since a high camera exposure time is required. In this research, we proposed an alternative method, based on coumarin dosimetry to monitor the hydroxylation activity, and high-speed imaging for the visualization of the vapor field. By this approach, we aim to capture the structure and the dynamics of the vapor field and to correlate this with the chemical effects induced in the ultrasonic reactor. This characterization was carried out for four different ultrasonic probe diameters (3, 7, 14 and 40 mm), displacement amplitudes and processing volumes. Key findings indicate that the probe diameter strongly affects the structure of the vapor field and the chemical effectiveness of the system. The proposed methodology could be applied to characterize other types of ultrasonic reactors with different operating and processing conditions.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"119 ","pages":"Article 107362"},"PeriodicalIF":8.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-speed imaging and coumarin dosimetry of horn type ultrasonic reactors: Influence of probe diameter and amplitude\",\"authors\":\"Gianmaria Viciconte , Varaha P. Sarvothaman , Paolo Guida , Tadd T. Truscott , William L. Roberts\",\"doi\":\"10.1016/j.ultsonch.2025.107362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ultrasound driven cavitation is widely used to intensify lab and industrial-scale processes. Various studies and experiments demonstrate that the acoustic energy, dissipated through the bubbles collapse, leads to intense physico-chemical effects in the processed liquid. A better understanding of these phenomena is crucial for the optimization of ultrasonic reactors, and their scale-up. In the current literature, the visual characterization of the reactor is mainly carried out with sonoluminescence and sonochemiluminescence. These techniques have limitations in the time resolution since a high camera exposure time is required. In this research, we proposed an alternative method, based on coumarin dosimetry to monitor the hydroxylation activity, and high-speed imaging for the visualization of the vapor field. By this approach, we aim to capture the structure and the dynamics of the vapor field and to correlate this with the chemical effects induced in the ultrasonic reactor. This characterization was carried out for four different ultrasonic probe diameters (3, 7, 14 and 40 mm), displacement amplitudes and processing volumes. Key findings indicate that the probe diameter strongly affects the structure of the vapor field and the chemical effectiveness of the system. The proposed methodology could be applied to characterize other types of ultrasonic reactors with different operating and processing conditions.</div></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"119 \",\"pages\":\"Article 107362\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350417725001415\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417725001415","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
High-speed imaging and coumarin dosimetry of horn type ultrasonic reactors: Influence of probe diameter and amplitude
Ultrasound driven cavitation is widely used to intensify lab and industrial-scale processes. Various studies and experiments demonstrate that the acoustic energy, dissipated through the bubbles collapse, leads to intense physico-chemical effects in the processed liquid. A better understanding of these phenomena is crucial for the optimization of ultrasonic reactors, and their scale-up. In the current literature, the visual characterization of the reactor is mainly carried out with sonoluminescence and sonochemiluminescence. These techniques have limitations in the time resolution since a high camera exposure time is required. In this research, we proposed an alternative method, based on coumarin dosimetry to monitor the hydroxylation activity, and high-speed imaging for the visualization of the vapor field. By this approach, we aim to capture the structure and the dynamics of the vapor field and to correlate this with the chemical effects induced in the ultrasonic reactor. This characterization was carried out for four different ultrasonic probe diameters (3, 7, 14 and 40 mm), displacement amplitudes and processing volumes. Key findings indicate that the probe diameter strongly affects the structure of the vapor field and the chemical effectiveness of the system. The proposed methodology could be applied to characterize other types of ultrasonic reactors with different operating and processing conditions.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.