{"title":"Transcendental Brauer-Manin obstructions on singular K3 surfaces.","authors":"Mohamed Alaa Tawfik, Rachel Newton","doi":"10.1007/s40993-024-00580-z","DOIUrl":"10.1007/s40993-024-00580-z","url":null,"abstract":"<p><p>Let <i>E</i> and <math><msup><mi>E</mi> <mo>'</mo></msup> </math> be elliptic curves over <math><mi>Q</mi></math> with complex multiplication by the ring of integers of an imaginary quadratic field <i>K</i> and let <math><mrow><mi>Y</mi> <mo>=</mo> <mrow><mspace></mspace> <mtext>Kum</mtext> <mspace></mspace></mrow> <mo>(</mo> <mi>E</mi> <mo>×</mo> <msup><mi>E</mi> <mo>'</mo></msup> <mo>)</mo></mrow> </math> be the minimal desingularisation of the quotient of <math><mrow><mi>E</mi> <mo>×</mo> <msup><mi>E</mi> <mo>'</mo></msup> </mrow> </math> by the action of <math><mrow><mo>-</mo> <mn>1</mn></mrow> </math> . We study the Brauer groups of such surfaces <i>Y</i> and use them to furnish new examples of transcendental Brauer-Manin obstructions to weak approximation.</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"11 1","pages":"16"},"PeriodicalIF":0.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655618/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142878096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}