Research in Number Theory最新文献

筛选
英文 中文
Transcendental Brauer-Manin obstructions on singular K3 surfaces. 奇异K3曲面上的先验Brauer-Manin障碍。
IF 0.6
Research in Number Theory Pub Date : 2025-01-01 Epub Date: 2024-12-18 DOI: 10.1007/s40993-024-00580-z
Mohamed Alaa Tawfik, Rachel Newton
{"title":"Transcendental Brauer-Manin obstructions on singular K3 surfaces.","authors":"Mohamed Alaa Tawfik, Rachel Newton","doi":"10.1007/s40993-024-00580-z","DOIUrl":"10.1007/s40993-024-00580-z","url":null,"abstract":"<p><p>Let <i>E</i> and <math><msup><mi>E</mi> <mo>'</mo></msup> </math> be elliptic curves over <math><mi>Q</mi></math> with complex multiplication by the ring of integers of an imaginary quadratic field <i>K</i> and let <math><mrow><mi>Y</mi> <mo>=</mo> <mrow><mspace></mspace> <mtext>Kum</mtext> <mspace></mspace></mrow> <mo>(</mo> <mi>E</mi> <mo>×</mo> <msup><mi>E</mi> <mo>'</mo></msup> <mo>)</mo></mrow> </math> be the minimal desingularisation of the quotient of <math><mrow><mi>E</mi> <mo>×</mo> <msup><mi>E</mi> <mo>'</mo></msup> </mrow> </math> by the action of <math><mrow><mo>-</mo> <mn>1</mn></mrow> </math> . We study the Brauer groups of such surfaces <i>Y</i> and use them to furnish new examples of transcendental Brauer-Manin obstructions to weak approximation.</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"11 1","pages":"16"},"PeriodicalIF":0.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655618/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142878096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Fourier-Jacobi Dirichlet series for cusp forms on orthogonal groups. 正交群上尖形的Fourier-Jacobi Dirichlet级数。
IF 0.8
Research in Number Theory Pub Date : 2025-01-01 Epub Date: 2025-09-19 DOI: 10.1007/s40993-025-00668-0
Rafail Psyroukis
{"title":"A Fourier-Jacobi Dirichlet series for cusp forms on orthogonal groups.","authors":"Rafail Psyroukis","doi":"10.1007/s40993-025-00668-0","DOIUrl":"https://doi.org/10.1007/s40993-025-00668-0","url":null,"abstract":"<p><p>We investigate a Dirichlet series involving the Fourier-Jacobi coefficients of two cusp forms <i>F</i>, <i>G</i> for orthogonal groups of signature <math><mrow><mo>(</mo> <mn>2</mn> <mo>,</mo> <mi>n</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo></mrow> </math> . In the case when <i>F</i> is a Hecke eigenform and <i>G</i> is a Maass lift of a Poincaré series, we establish a connection with the standard <i>L</i>-function attached to <i>F</i>. What is more, we find explicit choices of orthogonal groups, for which we obtain a clear-cut Euler product expression for this Dirichlet series. Through our considerations, we recover a classical result for Siegel modular forms, first introduced by Kohnen and Skoruppa, but also provide a range of new examples, which can be related to other kinds of modular forms, such as paramodular, Hermitian, and quaternionic.</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"11 4","pages":"90"},"PeriodicalIF":0.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449435/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145114578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Traces of partition Eisenstein series and almost holomorphic modular forms. 划分爱森斯坦级数的迹与几乎全纯模形式。
IF 0.6
Research in Number Theory Pub Date : 2025-01-01 Epub Date: 2025-04-23 DOI: 10.1007/s40993-025-00615-z
Kathrin Bringmann, Badri Vishal Pandey
{"title":"Traces of partition Eisenstein series and almost holomorphic modular forms.","authors":"Kathrin Bringmann, Badri Vishal Pandey","doi":"10.1007/s40993-025-00615-z","DOIUrl":"10.1007/s40993-025-00615-z","url":null,"abstract":"<p><p>Recently, Amdeberhan, Griffin, Ono, and Singh started the study of \"traces of partition Eisenstein series\" and used it to give explicit formulas for many interesting functions. In this note we determine the precise spaces in which they lie, find modular completions, and show how they are related via operators.</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"11 2","pages":"49"},"PeriodicalIF":0.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12018508/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143989987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructing families of 3-Selmer companions. 构建由3-Selmer同伴组成的家庭。
IF 0.6
Research in Number Theory Pub Date : 2025-01-01 Epub Date: 2025-07-04 DOI: 10.1007/s40993-025-00647-5
Harry Spencer
{"title":"Constructing families of 3-Selmer companions.","authors":"Harry Spencer","doi":"10.1007/s40993-025-00647-5","DOIUrl":"https://doi.org/10.1007/s40993-025-00647-5","url":null,"abstract":"<p><p>Mazur and Rubin introduced the notion of <i>n</i>-Selmer companion elliptic curves and gave several examples of pairs of non-isogenous Selmer companions. We construct several pairs of families of elliptic curves, each parameterised by <math><mrow><mi>t</mi> <mo>∈</mo> <mi>Z</mi></mrow> </math> , such that the two curves in a pair corresponding to a given <i>t</i> are non-isogenous 3-Selmer companions, possibly provided that <i>t</i> satisfies a simple congruence condition.</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"11 3","pages":"67"},"PeriodicalIF":0.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144576602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On p-refined Friedberg-Jacquet integrals and the classical symplectic locus in the GL 2 n eigenvariety. gl2n特征变化中的p-精炼Friedberg-Jacquet积分和经典辛轨迹。
IF 0.6
Research in Number Theory Pub Date : 2025-01-01 Epub Date: 2025-04-25 DOI: 10.1007/s40993-025-00631-z
Daniel Barrera Salazar, Andrew Graham, Chris Williams
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">On <i>p</i>-refined Friedberg-Jacquet integrals and the classical symplectic locus in the <ns0:math> <ns0:msub><ns0:mrow><ns0:mspace /> <ns0:mtext>GL</ns0:mtext> <ns0:mspace /></ns0:mrow> <ns0:mrow><ns0:mn>2</ns0:mn> <ns0:mi>n</ns0:mi></ns0:mrow> </ns0:msub> </ns0:math> eigenvariety.","authors":"Daniel Barrera Salazar, Andrew Graham, Chris Williams","doi":"10.1007/s40993-025-00631-z","DOIUrl":"https://doi.org/10.1007/s40993-025-00631-z","url":null,"abstract":"<p><p>Friedberg-Jacquet proved that if <math><mi>π</mi></math> is a cuspidal automorphic representation of <math> <mrow><msub><mtext>GL</mtext> <mrow><mn>2</mn> <mi>n</mi></mrow> </msub> <mrow><mo>(</mo> <mi>A</mi> <mo>)</mo></mrow> </mrow> </math> , then <math><mi>π</mi></math> is a functorial transfer from <math><msub><mtext>GSpin</mtext> <mrow><mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn></mrow> </msub> </math> if and only if a global zeta integral <math><msub><mi>Z</mi> <mi>H</mi></msub> </math> over <math><mrow><mi>H</mi> <mo>=</mo> <msub><mtext>GL</mtext> <mi>n</mi></msub> <mo>×</mo> <msub><mtext>GL</mtext> <mi>n</mi></msub> </mrow> </math> is non-vanishing on <math><mi>π</mi></math> . We conjecture a <i>p</i>-refined analogue: that any <i>P</i>-parahoric <i>p</i>-refinement <math> <msup><mover><mi>π</mi> <mo>~</mo></mover> <mi>P</mi></msup> </math> is a functorial transfer from <math><msub><mtext>GSpin</mtext> <mrow><mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn></mrow> </msub> </math> if and only if a <i>P</i>-twisted version of <math><msub><mi>Z</mi> <mi>H</mi></msub> </math> is non-vanishing on the <math> <msup><mover><mi>π</mi> <mo>~</mo></mover> <mi>P</mi></msup> </math> -eigenspace in <math><mi>π</mi></math> . This twisted <math><msub><mi>Z</mi> <mi>H</mi></msub> </math> appears in all constructions of <i>p</i>-adic <i>L</i>-functions via Shalika models. We connect our conjecture to the study of classical symplectic families in the <math><msub><mtext>GL</mtext> <mrow><mn>2</mn> <mi>n</mi></mrow> </msub> </math> eigenvariety, and-by proving upper bounds on the dimensions of such families-obtain various results towards the conjecture.</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"11 2","pages":"51"},"PeriodicalIF":0.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12031854/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144028936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-torsion subgroups and wild conductor exponents of plane quartics. 平面四分体的三扭转子群和野导体指数。
IF 0.8
Research in Number Theory Pub Date : 2025-01-01 Epub Date: 2025-10-04 DOI: 10.1007/s40993-025-00672-4
Elvira Lupoian, James Rawson
{"title":"Three-torsion subgroups and wild conductor exponents of plane quartics.","authors":"Elvira Lupoian, James Rawson","doi":"10.1007/s40993-025-00672-4","DOIUrl":"https://doi.org/10.1007/s40993-025-00672-4","url":null,"abstract":"<p><p>In this paper we give an algorithm to find the 3-torsion subgroup of the Jacobian of a smooth plane quartic curve with a marked rational point. We describe <math><mrow><mn>3</mn> <mo>-</mo></mrow> </math> torsion points in terms of cubics which triply intersect the curve, and use this to define a system of equations whose solution set corresponds to the coefficients of these cubics. We compute the points of this zero-dimensional, degree 728 scheme first by approximation, using homotopy continuation and Newton-Raphson, and then using continued fractions to obtain accurate expressions for these points. We describe how the Galois structure of the field of definition of the 3-torsion subgroup can be used to compute local wild conductor exponents, including at <math><mrow><mi>p</mi> <mo>=</mo> <mn>2</mn></mrow> </math> .</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"11 4","pages":"92"},"PeriodicalIF":0.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12496290/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145240026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distribution of Andrews’ singular overpartitions $${overline{C}}_{p,1}(n)$$ C ¯ 安德鲁斯奇异超分区的分布 $${overline{C}}_{p,1}(n)$$ C ¯
IF 0.8
Research in Number Theory Pub Date : 2024-01-04 DOI: 10.1007/s40993-023-00496-0
Chiranjit Ray
{"title":"Distribution of Andrews’ singular overpartitions \u0000 \u0000 \u0000 \u0000 $${overline{C}}_{p,1}(n)$$\u0000 \u0000 \u0000 \u0000 \u0000 C\u0000 ¯\u0000 \u0000 ","authors":"Chiranjit Ray","doi":"10.1007/s40993-023-00496-0","DOIUrl":"https://doi.org/10.1007/s40993-023-00496-0","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"59 9","pages":"1-8"},"PeriodicalIF":0.8,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139385616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotics of commuting -tuples in symmetric groups and log-concavity. 对称群中交换 ℓ -图元的渐近性和对数凹性
IF 0.6
Research in Number Theory Pub Date : 2024-01-01 Epub Date: 2024-10-03 DOI: 10.1007/s40993-024-00562-1
Kathrin Bringmann, Johann Franke, Bernhard Heim
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Asymptotics of commuting <ns0:math><ns0:mi>ℓ</ns0:mi></ns0:math> -tuples in symmetric groups and log-concavity.","authors":"Kathrin Bringmann, Johann Franke, Bernhard Heim","doi":"10.1007/s40993-024-00562-1","DOIUrl":"10.1007/s40993-024-00562-1","url":null,"abstract":"<p><p>Denote by <math> <mrow><msub><mi>N</mi> <mi>ℓ</mi></msub> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> the number of <math><mi>ℓ</mi></math> -tuples of elements in the symmetric group <math><msub><mi>S</mi> <mi>n</mi></msub> </math> with commuting components, normalized by the order of <math><msub><mi>S</mi> <mi>n</mi></msub> </math> . In this paper, we prove asymptotic formulas for <math> <mrow><msub><mi>N</mi> <mi>ℓ</mi></msub> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> . In addition, general criteria for log-concavity are shown, which can be applied to <math> <mrow><msub><mi>N</mi> <mi>ℓ</mi></msub> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> among other examples. Moreover, we obtain a Bessenrodt-Ono type theorem which gives an inequality of the form <math><mrow><mi>c</mi> <mo>(</mo> <mi>a</mi> <mo>)</mo> <mi>c</mi> <mo>(</mo> <mi>b</mi> <mo>)</mo> <mo>></mo> <mi>c</mi> <mo>(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>)</mo></mrow> </math> for certain families of sequences <i>c</i>(<i>n</i>).</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"10 4","pages":"83"},"PeriodicalIF":0.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449981/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Log concavity for unimodal sequences. 单模态序列的对数凹性。
IF 0.8
Research in Number Theory Pub Date : 2024-01-01 Epub Date: 2023-12-19 DOI: 10.1007/s40993-023-00490-6
Walter Bridges, Kathrin Bringmann
{"title":"Log concavity for unimodal sequences.","authors":"Walter Bridges, Kathrin Bringmann","doi":"10.1007/s40993-023-00490-6","DOIUrl":"10.1007/s40993-023-00490-6","url":null,"abstract":"<p><p>In this paper, we prove that the number of unimodal sequences of size <i>n</i> is log-concave. These are coefficients of a mixed false modular form and have a Rademacher-type exact formula due to recent work of the second author and Nazaroglu on false theta functions. Log-concavity and higher Turán inequalities have been well-studied for (restricted) partitions and coefficients of weakly holomorphic modular forms, and analytic proofs generally require precise asymptotic series with error term. In this paper, we proceed from the exact formula for unimodal sequences to carry out this calculation. We expect our method applies to other exact formulas for coefficients of mixed mock/false modular objects.</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"10 1","pages":"6"},"PeriodicalIF":0.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138832121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Pillai's Problem involving Lucas sequences of the second kind. 论涉及第二类卢卡斯序列的皮莱问题
IF 0.6
Research in Number Theory Pub Date : 2024-01-01 Epub Date: 2024-05-13 DOI: 10.1007/s40993-024-00534-5
Sebastian Heintze, Volker Ziegler
{"title":"On Pillai's Problem involving Lucas sequences of the second kind.","authors":"Sebastian Heintze, Volker Ziegler","doi":"10.1007/s40993-024-00534-5","DOIUrl":"10.1007/s40993-024-00534-5","url":null,"abstract":"<p><p>In this paper, we consider the Diophantine equation <math><mrow><msub><mi>V</mi><mi>n</mi></msub><mo>-</mo><msup><mi>b</mi><mi>m</mi></msup><mo>=</mo><mi>c</mi></mrow></math> for given integers <i>b</i>, <i>c</i> with <math><mrow><mi>b</mi><mo>≥</mo><mn>2</mn></mrow></math>, whereas <math><msub><mi>V</mi><mi>n</mi></msub></math> varies among Lucas-Lehmer sequences of the second kind. We prove under some technical conditions that if the considered equation has at least three solutions (<i>n</i>, <i>m</i>) , then there is an upper bound on the size of the solutions as well as on the size of the coefficients in the characteristic polynomial of <math><msub><mi>V</mi><mi>n</mi></msub></math>.</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"10 2","pages":"51"},"PeriodicalIF":0.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11090840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140945180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信