A Fourier-Jacobi Dirichlet series for cusp forms on orthogonal groups.

IF 0.8 Q3 MATHEMATICS
Research in Number Theory Pub Date : 2025-01-01 Epub Date: 2025-09-19 DOI:10.1007/s40993-025-00668-0
Rafail Psyroukis
{"title":"A Fourier-Jacobi Dirichlet series for cusp forms on orthogonal groups.","authors":"Rafail Psyroukis","doi":"10.1007/s40993-025-00668-0","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate a Dirichlet series involving the Fourier-Jacobi coefficients of two cusp forms <i>F</i>, <i>G</i> for orthogonal groups of signature <math><mrow><mo>(</mo> <mn>2</mn> <mo>,</mo> <mi>n</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo></mrow> </math> . In the case when <i>F</i> is a Hecke eigenform and <i>G</i> is a Maass lift of a Poincaré series, we establish a connection with the standard <i>L</i>-function attached to <i>F</i>. What is more, we find explicit choices of orthogonal groups, for which we obtain a clear-cut Euler product expression for this Dirichlet series. Through our considerations, we recover a classical result for Siegel modular forms, first introduced by Kohnen and Skoruppa, but also provide a range of new examples, which can be related to other kinds of modular forms, such as paramodular, Hermitian, and quaternionic.</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"11 4","pages":"90"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449435/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40993-025-00668-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate a Dirichlet series involving the Fourier-Jacobi coefficients of two cusp forms FG for orthogonal groups of signature ( 2 , n + 2 ) . In the case when F is a Hecke eigenform and G is a Maass lift of a Poincaré series, we establish a connection with the standard L-function attached to F. What is more, we find explicit choices of orthogonal groups, for which we obtain a clear-cut Euler product expression for this Dirichlet series. Through our considerations, we recover a classical result for Siegel modular forms, first introduced by Kohnen and Skoruppa, but also provide a range of new examples, which can be related to other kinds of modular forms, such as paramodular, Hermitian, and quaternionic.

正交群上尖形的Fourier-Jacobi Dirichlet级数。
研究了特征(2,n + 2)的正交群的两种尖形F, G的Fourier-Jacobi系数的Dirichlet级数。当F是一个Hecke特征型,G是一个poincarcarve级数的一个mass lift时,我们建立了与F的标准l函数的联系,并找到了正交群的显式选择,得到了该Dirichlet级数的一个清晰的欧拉积表达式。通过我们的考虑,我们恢复了由Kohnen和Skoruppa首先引入的Siegel模形式的经典结果,但也提供了一系列新的例子,这些例子可以与其他类型的模形式相关,如副模、厄米模和四元模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
12.50%
发文量
88
期刊介绍: Research in Number Theory is an international, peer-reviewed Hybrid Journal covering the scope of the mathematical disciplines of Number Theory and Arithmetic Geometry. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to these research areas. It will also publish shorter research communications (Letters) covering nascent research in some of the burgeoning areas of number theory research. This journal publishes the highest quality papers in all of the traditional areas of number theory research, and it actively seeks to publish seminal papers in the most emerging and interdisciplinary areas here as well. Research in Number Theory also publishes comprehensive reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信