Daniel Barrera Salazar, Andrew Graham, Chris Williams
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">On <i>p</i>-refined Friedberg-Jacquet integrals and the classical symplectic locus in the <ns0:math> <ns0:msub><ns0:mrow><ns0:mspace /> <ns0:mtext>GL</ns0:mtext> <ns0:mspace /></ns0:mrow> <ns0:mrow><ns0:mn>2</ns0:mn> <ns0:mi>n</ns0:mi></ns0:mrow> </ns0:msub> </ns0:math> eigenvariety.","authors":"Daniel Barrera Salazar, Andrew Graham, Chris Williams","doi":"10.1007/s40993-025-00631-z","DOIUrl":null,"url":null,"abstract":"<p><p>Friedberg-Jacquet proved that if <math><mi>π</mi></math> is a cuspidal automorphic representation of <math> <mrow><msub><mtext>GL</mtext> <mrow><mn>2</mn> <mi>n</mi></mrow> </msub> <mrow><mo>(</mo> <mi>A</mi> <mo>)</mo></mrow> </mrow> </math> , then <math><mi>π</mi></math> is a functorial transfer from <math><msub><mtext>GSpin</mtext> <mrow><mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn></mrow> </msub> </math> if and only if a global zeta integral <math><msub><mi>Z</mi> <mi>H</mi></msub> </math> over <math><mrow><mi>H</mi> <mo>=</mo> <msub><mtext>GL</mtext> <mi>n</mi></msub> <mo>×</mo> <msub><mtext>GL</mtext> <mi>n</mi></msub> </mrow> </math> is non-vanishing on <math><mi>π</mi></math> . We conjecture a <i>p</i>-refined analogue: that any <i>P</i>-parahoric <i>p</i>-refinement <math> <msup><mover><mi>π</mi> <mo>~</mo></mover> <mi>P</mi></msup> </math> is a functorial transfer from <math><msub><mtext>GSpin</mtext> <mrow><mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn></mrow> </msub> </math> if and only if a <i>P</i>-twisted version of <math><msub><mi>Z</mi> <mi>H</mi></msub> </math> is non-vanishing on the <math> <msup><mover><mi>π</mi> <mo>~</mo></mover> <mi>P</mi></msup> </math> -eigenspace in <math><mi>π</mi></math> . This twisted <math><msub><mi>Z</mi> <mi>H</mi></msub> </math> appears in all constructions of <i>p</i>-adic <i>L</i>-functions via Shalika models. We connect our conjecture to the study of classical symplectic families in the <math><msub><mtext>GL</mtext> <mrow><mn>2</mn> <mi>n</mi></mrow> </msub> </math> eigenvariety, and-by proving upper bounds on the dimensions of such families-obtain various results towards the conjecture.</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"11 2","pages":"51"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12031854/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40993-025-00631-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Friedberg-Jacquet proved that if is a cuspidal automorphic representation of , then is a functorial transfer from if and only if a global zeta integral over is non-vanishing on . We conjecture a p-refined analogue: that any P-parahoric p-refinement is a functorial transfer from if and only if a P-twisted version of is non-vanishing on the -eigenspace in . This twisted appears in all constructions of p-adic L-functions via Shalika models. We connect our conjecture to the study of classical symplectic families in the eigenvariety, and-by proving upper bounds on the dimensions of such families-obtain various results towards the conjecture.
期刊介绍:
Research in Number Theory is an international, peer-reviewed Hybrid Journal covering the scope of the mathematical disciplines of Number Theory and Arithmetic Geometry. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to these research areas. It will also publish shorter research communications (Letters) covering nascent research in some of the burgeoning areas of number theory research. This journal publishes the highest quality papers in all of the traditional areas of number theory research, and it actively seeks to publish seminal papers in the most emerging and interdisciplinary areas here as well. Research in Number Theory also publishes comprehensive reviews.