On p-refined Friedberg-Jacquet integrals and the classical symplectic locus in the GL 2 n eigenvariety.

IF 0.8 Q3 MATHEMATICS
Research in Number Theory Pub Date : 2025-01-01 Epub Date: 2025-04-25 DOI:10.1007/s40993-025-00631-z
Daniel Barrera Salazar, Andrew Graham, Chris Williams
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">On <i>p</i>-refined Friedberg-Jacquet integrals and the classical symplectic locus in the <ns0:math> <ns0:msub><ns0:mrow><ns0:mspace /> <ns0:mtext>GL</ns0:mtext> <ns0:mspace /></ns0:mrow> <ns0:mrow><ns0:mn>2</ns0:mn> <ns0:mi>n</ns0:mi></ns0:mrow> </ns0:msub> </ns0:math> eigenvariety.","authors":"Daniel Barrera Salazar, Andrew Graham, Chris Williams","doi":"10.1007/s40993-025-00631-z","DOIUrl":null,"url":null,"abstract":"<p><p>Friedberg-Jacquet proved that if <math><mi>π</mi></math> is a cuspidal automorphic representation of <math> <mrow><msub><mtext>GL</mtext> <mrow><mn>2</mn> <mi>n</mi></mrow> </msub> <mrow><mo>(</mo> <mi>A</mi> <mo>)</mo></mrow> </mrow> </math> , then <math><mi>π</mi></math> is a functorial transfer from <math><msub><mtext>GSpin</mtext> <mrow><mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn></mrow> </msub> </math> if and only if a global zeta integral <math><msub><mi>Z</mi> <mi>H</mi></msub> </math> over <math><mrow><mi>H</mi> <mo>=</mo> <msub><mtext>GL</mtext> <mi>n</mi></msub> <mo>×</mo> <msub><mtext>GL</mtext> <mi>n</mi></msub> </mrow> </math> is non-vanishing on <math><mi>π</mi></math> . We conjecture a <i>p</i>-refined analogue: that any <i>P</i>-parahoric <i>p</i>-refinement <math> <msup><mover><mi>π</mi> <mo>~</mo></mover> <mi>P</mi></msup> </math> is a functorial transfer from <math><msub><mtext>GSpin</mtext> <mrow><mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn></mrow> </msub> </math> if and only if a <i>P</i>-twisted version of <math><msub><mi>Z</mi> <mi>H</mi></msub> </math> is non-vanishing on the <math> <msup><mover><mi>π</mi> <mo>~</mo></mover> <mi>P</mi></msup> </math> -eigenspace in <math><mi>π</mi></math> . This twisted <math><msub><mi>Z</mi> <mi>H</mi></msub> </math> appears in all constructions of <i>p</i>-adic <i>L</i>-functions via Shalika models. We connect our conjecture to the study of classical symplectic families in the <math><msub><mtext>GL</mtext> <mrow><mn>2</mn> <mi>n</mi></mrow> </msub> </math> eigenvariety, and-by proving upper bounds on the dimensions of such families-obtain various results towards the conjecture.</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"11 2","pages":"51"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12031854/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40993-025-00631-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Friedberg-Jacquet proved that if π is a cuspidal automorphic representation of GL 2 n ( A ) , then π is a functorial transfer from GSpin 2 n + 1 if and only if a global zeta integral Z H over H = GL n × GL n is non-vanishing on π . We conjecture a p-refined analogue: that any P-parahoric p-refinement π ~ P is a functorial transfer from GSpin 2 n + 1 if and only if a P-twisted version of Z H is non-vanishing on the π ~ P -eigenspace in π . This twisted Z H appears in all constructions of p-adic L-functions via Shalika models. We connect our conjecture to the study of classical symplectic families in the GL 2 n eigenvariety, and-by proving upper bounds on the dimensions of such families-obtain various results towards the conjecture.

Abstract Image

Abstract Image

Abstract Image

gl2n特征变化中的p-精炼Friedberg-Jacquet积分和经典辛轨迹。
Friedberg-Jacquet证明了如果π是GSpin 2n (a)的倒自同构表示,则π是GSpin 2n + 1的泛函迁移,当且仅当全局zeta积分zh / H = GL n × GL n在π上不消失。我们推测了一个P-精化的类比:当且仅当π ~ P-本征空间上的Z - H的P-扭曲版本不消失时,任何P-逆P-精化π ~ P都是GSpin 2 n + 1的函子迁移。这种扭曲的zh通过Shalika模型出现在p进l函数的所有构造中。我们把我们的猜想与GL 2 n特征变中的经典辛族的研究联系起来,并通过证明这些辛族的维数上界,得到了关于这个猜想的各种结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
12.50%
发文量
88
期刊介绍: Research in Number Theory is an international, peer-reviewed Hybrid Journal covering the scope of the mathematical disciplines of Number Theory and Arithmetic Geometry. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to these research areas. It will also publish shorter research communications (Letters) covering nascent research in some of the burgeoning areas of number theory research. This journal publishes the highest quality papers in all of the traditional areas of number theory research, and it actively seeks to publish seminal papers in the most emerging and interdisciplinary areas here as well. Research in Number Theory also publishes comprehensive reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信