Asymptotics of commuting -tuples in symmetric groups and log-concavity.

IF 0.6 Q3 MATHEMATICS
Research in Number Theory Pub Date : 2024-01-01 Epub Date: 2024-10-03 DOI:10.1007/s40993-024-00562-1
Kathrin Bringmann, Johann Franke, Bernhard Heim
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Asymptotics of commuting <ns0:math><ns0:mi>ℓ</ns0:mi></ns0:math> -tuples in symmetric groups and log-concavity.","authors":"Kathrin Bringmann, Johann Franke, Bernhard Heim","doi":"10.1007/s40993-024-00562-1","DOIUrl":null,"url":null,"abstract":"<p><p>Denote by <math> <mrow><msub><mi>N</mi> <mi>ℓ</mi></msub> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> the number of <math><mi>ℓ</mi></math> -tuples of elements in the symmetric group <math><msub><mi>S</mi> <mi>n</mi></msub> </math> with commuting components, normalized by the order of <math><msub><mi>S</mi> <mi>n</mi></msub> </math> . In this paper, we prove asymptotic formulas for <math> <mrow><msub><mi>N</mi> <mi>ℓ</mi></msub> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> . In addition, general criteria for log-concavity are shown, which can be applied to <math> <mrow><msub><mi>N</mi> <mi>ℓ</mi></msub> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> among other examples. Moreover, we obtain a Bessenrodt-Ono type theorem which gives an inequality of the form <math><mrow><mi>c</mi> <mo>(</mo> <mi>a</mi> <mo>)</mo> <mi>c</mi> <mo>(</mo> <mi>b</mi> <mo>)</mo> <mo>></mo> <mi>c</mi> <mo>(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>)</mo></mrow> </math> for certain families of sequences <i>c</i>(<i>n</i>).</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"10 4","pages":"83"},"PeriodicalIF":0.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449981/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40993-024-00562-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Denote by N ( n ) the number of -tuples of elements in the symmetric group S n with commuting components, normalized by the order of S n . In this paper, we prove asymptotic formulas for N ( n ) . In addition, general criteria for log-concavity are shown, which can be applied to N ( n ) among other examples. Moreover, we obtain a Bessenrodt-Ono type theorem which gives an inequality of the form c ( a ) c ( b ) > c ( a + b ) for certain families of sequences c(n).

对称群中交换 ℓ -图元的渐近性和对数凹性
用 N ℓ ( n ) 表示对称群 S n 中具有交换成分的元素的 ℓ 元组数,以 S n 的阶归一化。本文证明了 N ℓ ( n ) 的渐近公式。此外,本文还展示了对数凹性的一般标准,这些标准可应用于 N ℓ ( n ) 及其他例子。此外,我们还得到了一个贝森罗特-奥诺(Bessenrodt-Ono)类型的定理,它给出了某些序列族 c(n) 的 c ( a ) c ( b ) > c ( a + b ) 的不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
12.50%
发文量
88
期刊介绍: Research in Number Theory is an international, peer-reviewed Hybrid Journal covering the scope of the mathematical disciplines of Number Theory and Arithmetic Geometry. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to these research areas. It will also publish shorter research communications (Letters) covering nascent research in some of the burgeoning areas of number theory research. This journal publishes the highest quality papers in all of the traditional areas of number theory research, and it actively seeks to publish seminal papers in the most emerging and interdisciplinary areas here as well. Research in Number Theory also publishes comprehensive reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信