{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Asymptotics of commuting <ns0:math><ns0:mi>ℓ</ns0:mi></ns0:math> -tuples in symmetric groups and log-concavity.","authors":"Kathrin Bringmann, Johann Franke, Bernhard Heim","doi":"10.1007/s40993-024-00562-1","DOIUrl":null,"url":null,"abstract":"<p><p>Denote by <math> <mrow><msub><mi>N</mi> <mi>ℓ</mi></msub> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> the number of <math><mi>ℓ</mi></math> -tuples of elements in the symmetric group <math><msub><mi>S</mi> <mi>n</mi></msub> </math> with commuting components, normalized by the order of <math><msub><mi>S</mi> <mi>n</mi></msub> </math> . In this paper, we prove asymptotic formulas for <math> <mrow><msub><mi>N</mi> <mi>ℓ</mi></msub> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> . In addition, general criteria for log-concavity are shown, which can be applied to <math> <mrow><msub><mi>N</mi> <mi>ℓ</mi></msub> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> among other examples. Moreover, we obtain a Bessenrodt-Ono type theorem which gives an inequality of the form <math><mrow><mi>c</mi> <mo>(</mo> <mi>a</mi> <mo>)</mo> <mi>c</mi> <mo>(</mo> <mi>b</mi> <mo>)</mo> <mo>></mo> <mi>c</mi> <mo>(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>)</mo></mrow> </math> for certain families of sequences <i>c</i>(<i>n</i>).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449981/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40993-024-00562-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Denote by the number of -tuples of elements in the symmetric group with commuting components, normalized by the order of . In this paper, we prove asymptotic formulas for . In addition, general criteria for log-concavity are shown, which can be applied to among other examples. Moreover, we obtain a Bessenrodt-Ono type theorem which gives an inequality of the form for certain families of sequences c(n).
用 N ℓ ( n ) 表示对称群 S n 中具有交换成分的元素的 ℓ 元组数,以 S n 的阶归一化。本文证明了 N ℓ ( n ) 的渐近公式。此外,本文还展示了对数凹性的一般标准,这些标准可应用于 N ℓ ( n ) 及其他例子。此外,我们还得到了一个贝森罗特-奥诺(Bessenrodt-Ono)类型的定理,它给出了某些序列族 c(n) 的 c ( a ) c ( b ) > c ( a + b ) 的不等式。