对称群中交换 ℓ -图元的渐近性和对数凹性

Pub Date : 2024-01-01 Epub Date: 2024-10-03 DOI:10.1007/s40993-024-00562-1
Kathrin Bringmann, Johann Franke, Bernhard Heim
{"title":"对称群中交换 ℓ -图元的渐近性和对数凹性","authors":"Kathrin Bringmann, Johann Franke, Bernhard Heim","doi":"10.1007/s40993-024-00562-1","DOIUrl":null,"url":null,"abstract":"<p><p>Denote by <math> <mrow><msub><mi>N</mi> <mi>ℓ</mi></msub> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> the number of <math><mi>ℓ</mi></math> -tuples of elements in the symmetric group <math><msub><mi>S</mi> <mi>n</mi></msub> </math> with commuting components, normalized by the order of <math><msub><mi>S</mi> <mi>n</mi></msub> </math> . In this paper, we prove asymptotic formulas for <math> <mrow><msub><mi>N</mi> <mi>ℓ</mi></msub> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> . In addition, general criteria for log-concavity are shown, which can be applied to <math> <mrow><msub><mi>N</mi> <mi>ℓ</mi></msub> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> among other examples. Moreover, we obtain a Bessenrodt-Ono type theorem which gives an inequality of the form <math><mrow><mi>c</mi> <mo>(</mo> <mi>a</mi> <mo>)</mo> <mi>c</mi> <mo>(</mo> <mi>b</mi> <mo>)</mo> <mo>></mo> <mi>c</mi> <mo>(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>)</mo></mrow> </math> for certain families of sequences <i>c</i>(<i>n</i>).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449981/pdf/","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">Asymptotics of commuting <ns0:math><ns0:mi>ℓ</ns0:mi></ns0:math> -tuples in symmetric groups and log-concavity.\",\"authors\":\"Kathrin Bringmann, Johann Franke, Bernhard Heim\",\"doi\":\"10.1007/s40993-024-00562-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Denote by <math> <mrow><msub><mi>N</mi> <mi>ℓ</mi></msub> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> the number of <math><mi>ℓ</mi></math> -tuples of elements in the symmetric group <math><msub><mi>S</mi> <mi>n</mi></msub> </math> with commuting components, normalized by the order of <math><msub><mi>S</mi> <mi>n</mi></msub> </math> . In this paper, we prove asymptotic formulas for <math> <mrow><msub><mi>N</mi> <mi>ℓ</mi></msub> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> . In addition, general criteria for log-concavity are shown, which can be applied to <math> <mrow><msub><mi>N</mi> <mi>ℓ</mi></msub> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> among other examples. Moreover, we obtain a Bessenrodt-Ono type theorem which gives an inequality of the form <math><mrow><mi>c</mi> <mo>(</mo> <mi>a</mi> <mo>)</mo> <mi>c</mi> <mo>(</mo> <mi>b</mi> <mo>)</mo> <mo>></mo> <mi>c</mi> <mo>(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>)</mo></mrow> </math> for certain families of sequences <i>c</i>(<i>n</i>).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449981/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40993-024-00562-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40993-024-00562-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用 N ℓ ( n ) 表示对称群 S n 中具有交换成分的元素的 ℓ 元组数,以 S n 的阶归一化。本文证明了 N ℓ ( n ) 的渐近公式。此外,本文还展示了对数凹性的一般标准,这些标准可应用于 N ℓ ( n ) 及其他例子。此外,我们还得到了一个贝森罗特-奥诺(Bessenrodt-Ono)类型的定理,它给出了某些序列族 c(n) 的 c ( a ) c ( b ) > c ( a + b ) 的不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Asymptotics of commuting -tuples in symmetric groups and log-concavity.

Denote by N ( n ) the number of -tuples of elements in the symmetric group S n with commuting components, normalized by the order of S n . In this paper, we prove asymptotic formulas for N ( n ) . In addition, general criteria for log-concavity are shown, which can be applied to N ( n ) among other examples. Moreover, we obtain a Bessenrodt-Ono type theorem which gives an inequality of the form c ( a ) c ( b ) > c ( a + b ) for certain families of sequences c(n).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信