Abbey Bourdon, David R. Gill, Jeremy Rouse, Lori D. Watson
{"title":"Odd degree isolated points on $$X_1(N)$$ with rational j-invariant","authors":"Abbey Bourdon, David R. Gill, Jeremy Rouse, Lori D. Watson","doi":"10.1007/s40993-023-00488-0","DOIUrl":"https://doi.org/10.1007/s40993-023-00488-0","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"347 2‐3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138966733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Error approximation for backwards and simple continued fractions","authors":"Cameron Bjorklund, Matthew Litman","doi":"10.1007/s40993-023-00481-7","DOIUrl":"https://doi.org/10.1007/s40993-023-00481-7","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"55 ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139248580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transcendence criterion with $$(beta ,{mathcal {A}})$$-representations in some quadratic integer bases","authors":"Maryam Elaoud, Mohamed Hbaib","doi":"10.1007/s40993-023-00486-2","DOIUrl":"https://doi.org/10.1007/s40993-023-00486-2","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"7 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135142137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fast norm computation in smooth-degree Abelian number fields","authors":"Daniel J. Bernstein","doi":"10.1007/s40993-022-00402-0","DOIUrl":"https://doi.org/10.1007/s40993-022-00402-0","url":null,"abstract":"Abstract This paper presents a fast method to compute algebraic norms of integral elements of smooth-degree cyclotomic fields, and, more generally, smooth-degree Galois number fields with commutative Galois groups. The typical scenario arising in S -unit searches (for, e.g., class-group computation) is computing a $$Theta (nlog n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Θ</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -bit norm of an element of weight $$n^{1/2+o(1)}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> <mml:mo>+</mml:mo> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> </mml:math> in a degree- n field; this method then uses $$n(log n)^{3+o(1)}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>+</mml:mo> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> bit operations. An $$n(log n)^{O(1)}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> operation count was already known in two easier special cases: norms from power-of-2 cyclotomic fields via towers of power-of-2 cyclotomic subfields, and norms from multiquadratic fields via towers of multiquadratic subfields. This paper handles more general Abelian fields by identifying tower-compatible integral bases supporting fast multiplication; in particular, there is a synergy between tower-compatible Gauss-period integral bases and a fast-multiplication idea from Rader. As a baseline, this paper also analyzes various standard norm-computation techniques that apply to arbitrary number fields, concluding that all of these techniques use at least $$n^2(log n)^{2+o(1)}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>+</mml:mo> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> bit operations in the same scenario, even with fast subroutines for continued fractions and for complex FFTs. Compared to this baseline, algorithms dedicated to smooth-degree Abelian fields find each norm $","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"116 23","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135136491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexis LaBelle, Emily Van Bergeyk, Matthew P. Young
{"title":"Reciprocity and the kernel of Dedekind sums","authors":"Alexis LaBelle, Emily Van Bergeyk, Matthew P. Young","doi":"10.1007/s40993-023-00484-4","DOIUrl":"https://doi.org/10.1007/s40993-023-00484-4","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":" 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135292694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Zeros transfer for recursively defined polynomials","authors":"Bernhard Heim, Markus Neuhauser, Robert Tröger","doi":"10.1007/s40993-023-00480-8","DOIUrl":"https://doi.org/10.1007/s40993-023-00480-8","url":null,"abstract":"Abstract The zeros of D’Arcais polynomials, also known as Nekrasov–Okounkov polynomials, dictate the vanishing of the Fourier coefficients of powers of the Dedekind eta functions. These polynomials satisfy difference equations of hereditary type with non-constant coefficients. We relate the D’Arcais polynomials to polynomials satisfying a Volterra difference equation of convolution type. We obtain results on the transfer of the location of the zeros. As an application, we obtain an identity between Chebyshev polynomials of the second kind and 1-associated Laguerre polynomials. We obtain a new version of the Lehmer conjecture and bounds for the zeros of the Hermite polynomials.","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"115 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135342125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On further application of the zeta distribution to number theory","authors":"Takahiko Fujita, Naohiro Yoshida","doi":"10.1007/s40993-023-00485-3","DOIUrl":"https://doi.org/10.1007/s40993-023-00485-3","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"27 40","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135391919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On powerful integers expressible as sums of two coprime fourth powers","authors":"Noam D. Elkies, Gaurav Goel","doi":"10.1007/s40993-022-00415-9","DOIUrl":"https://doi.org/10.1007/s40993-022-00415-9","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"52 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135474994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spherical designs and modular forms of the $$D_4$$ lattice","authors":"Masatake Hirao, Hiroshi Nozaki, Koji Tasaka","doi":"10.1007/s40993-023-00479-1","DOIUrl":"https://doi.org/10.1007/s40993-023-00479-1","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135325739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Counting elliptic curves over the rationals with a 7-isogeny","authors":"Grant Molnar, John Voight","doi":"10.1007/s40993-023-00482-6","DOIUrl":"https://doi.org/10.1007/s40993-023-00482-6","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"418 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135869816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}