Fast norm computation in smooth-degree Abelian number fields

Pub Date : 2023-11-10 DOI:10.1007/s40993-022-00402-0
Daniel J. Bernstein
{"title":"Fast norm computation in smooth-degree Abelian number fields","authors":"Daniel J. Bernstein","doi":"10.1007/s40993-022-00402-0","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a fast method to compute algebraic norms of integral elements of smooth-degree cyclotomic fields, and, more generally, smooth-degree Galois number fields with commutative Galois groups. The typical scenario arising in S -unit searches (for, e.g., class-group computation) is computing a $$\\Theta (n\\log n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Θ</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -bit norm of an element of weight $$n^{1/2+o(1)}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> <mml:mo>+</mml:mo> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> </mml:math> in a degree- n field; this method then uses $$n(\\log n)^{3+o(1)}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>+</mml:mo> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> bit operations. An $$n(\\log n)^{O(1)}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> operation count was already known in two easier special cases: norms from power-of-2 cyclotomic fields via towers of power-of-2 cyclotomic subfields, and norms from multiquadratic fields via towers of multiquadratic subfields. This paper handles more general Abelian fields by identifying tower-compatible integral bases supporting fast multiplication; in particular, there is a synergy between tower-compatible Gauss-period integral bases and a fast-multiplication idea from Rader. As a baseline, this paper also analyzes various standard norm-computation techniques that apply to arbitrary number fields, concluding that all of these techniques use at least $$n^2(\\log n)^{2+o(1)}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>+</mml:mo> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> bit operations in the same scenario, even with fast subroutines for continued fractions and for complex FFTs. Compared to this baseline, algorithms dedicated to smooth-degree Abelian fields find each norm $$n/(\\log n)^{1+o(1)}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>/</mml:mo> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> times faster, and finish norm computations inside S -unit searches $$n^2/(\\log n)^{1+o(1)}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>/</mml:mo> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> times faster.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40993-022-00402-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract This paper presents a fast method to compute algebraic norms of integral elements of smooth-degree cyclotomic fields, and, more generally, smooth-degree Galois number fields with commutative Galois groups. The typical scenario arising in S -unit searches (for, e.g., class-group computation) is computing a $$\Theta (n\log n)$$ Θ ( n log n ) -bit norm of an element of weight $$n^{1/2+o(1)}$$ n 1 / 2 + o ( 1 ) in a degree- n field; this method then uses $$n(\log n)^{3+o(1)}$$ n ( log n ) 3 + o ( 1 ) bit operations. An $$n(\log n)^{O(1)}$$ n ( log n ) O ( 1 ) operation count was already known in two easier special cases: norms from power-of-2 cyclotomic fields via towers of power-of-2 cyclotomic subfields, and norms from multiquadratic fields via towers of multiquadratic subfields. This paper handles more general Abelian fields by identifying tower-compatible integral bases supporting fast multiplication; in particular, there is a synergy between tower-compatible Gauss-period integral bases and a fast-multiplication idea from Rader. As a baseline, this paper also analyzes various standard norm-computation techniques that apply to arbitrary number fields, concluding that all of these techniques use at least $$n^2(\log n)^{2+o(1)}$$ n 2 ( log n ) 2 + o ( 1 ) bit operations in the same scenario, even with fast subroutines for continued fractions and for complex FFTs. Compared to this baseline, algorithms dedicated to smooth-degree Abelian fields find each norm $$n/(\log n)^{1+o(1)}$$ n / ( log n ) 1 + o ( 1 ) times faster, and finish norm computations inside S -unit searches $$n^2/(\log n)^{1+o(1)}$$ n 2 / ( log n ) 1 + o ( 1 ) times faster.
分享
查看原文
光滑阿贝尔数域的快速范数计算
摘要本文给出了一种快速计算光滑分环域的积分元的代数范数的方法,更一般地,给出了具有可交换伽罗瓦群的光滑伽罗瓦数域的代数范数。在S单元搜索(例如,类-组计算)中出现的典型场景是计算权重为$$n^{1/2+o(1)}$$ n 1 / 2 + o(1)的元素的$$\Theta (n\log n)$$ Θ (n log n)位范数在度- n字段中;这个方法然后使用$$n(\log n)^{3+o(1)}$$ n (log n) 3 + o(1)位运算。$$n(\log n)^{O(1)}$$ n (log n) O(1)个运算次数在两种更简单的特殊情况下是已知的:从2次幂的环切域通过2次幂的环切子域的塔的模,以及从多二次域通过多二次子域的塔的模。本文通过识别支持快速乘法的塔兼容积分基来处理更一般的阿贝尔域;特别是,在塔兼容的高斯周期积分基和Rader的快速乘法思想之间存在协同作用。作为基准,本文还分析了适用于任意数字字段的各种标准规范计算技术,得出的结论是,所有这些技术在相同的场景中至少使用$$n^2(\log n)^{2+o(1)}$$ n 2 (log n) 2 + o(1)位操作,即使使用用于连分式和复杂fft的快速子程序。与此基线相比,专用于光滑度阿贝尔域的算法查找每个范数的速度要快$$n/(\log n)^{1+o(1)}$$ n / (log n) 1 + o(1)倍,并且在S -unit搜索中完成范数计算的速度要快$$n^2/(\log n)^{1+o(1)}$$ n 2 / (log n) 1 + o(1)倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信