{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Asymptotics of commuting <ns0:math><ns0:mi>ℓ</ns0:mi></ns0:math> -tuples in symmetric groups and log-concavity.","authors":"Kathrin Bringmann, Johann Franke, Bernhard Heim","doi":"10.1007/s40993-024-00562-1","DOIUrl":"10.1007/s40993-024-00562-1","url":null,"abstract":"<p><p>Denote by <math> <mrow><msub><mi>N</mi> <mi>ℓ</mi></msub> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> the number of <math><mi>ℓ</mi></math> -tuples of elements in the symmetric group <math><msub><mi>S</mi> <mi>n</mi></msub> </math> with commuting components, normalized by the order of <math><msub><mi>S</mi> <mi>n</mi></msub> </math> . In this paper, we prove asymptotic formulas for <math> <mrow><msub><mi>N</mi> <mi>ℓ</mi></msub> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> . In addition, general criteria for log-concavity are shown, which can be applied to <math> <mrow><msub><mi>N</mi> <mi>ℓ</mi></msub> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> among other examples. Moreover, we obtain a Bessenrodt-Ono type theorem which gives an inequality of the form <math><mrow><mi>c</mi> <mo>(</mo> <mi>a</mi> <mo>)</mo> <mi>c</mi> <mo>(</mo> <mi>b</mi> <mo>)</mo> <mo>></mo> <mi>c</mi> <mo>(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>)</mo></mrow> </math> for certain families of sequences <i>c</i>(<i>n</i>).</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449981/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Log concavity for unimodal sequences.","authors":"Walter Bridges, Kathrin Bringmann","doi":"10.1007/s40993-023-00490-6","DOIUrl":"10.1007/s40993-023-00490-6","url":null,"abstract":"<p><p>In this paper, we prove that the number of unimodal sequences of size <i>n</i> is log-concave. These are coefficients of a mixed false modular form and have a Rademacher-type exact formula due to recent work of the second author and Nazaroglu on false theta functions. Log-concavity and higher Turán inequalities have been well-studied for (restricted) partitions and coefficients of weakly holomorphic modular forms, and analytic proofs generally require precise asymptotic series with error term. In this paper, we proceed from the exact formula for unimodal sequences to carry out this calculation. We expect our method applies to other exact formulas for coefficients of mixed mock/false modular objects.</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138832121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Pillai's Problem involving Lucas sequences of the second kind.","authors":"Sebastian Heintze, Volker Ziegler","doi":"10.1007/s40993-024-00534-5","DOIUrl":"https://doi.org/10.1007/s40993-024-00534-5","url":null,"abstract":"<p><p>In this paper, we consider the Diophantine equation <math><mrow><msub><mi>V</mi><mi>n</mi></msub><mo>-</mo><msup><mi>b</mi><mi>m</mi></msup><mo>=</mo><mi>c</mi></mrow></math> for given integers <i>b</i>, <i>c</i> with <math><mrow><mi>b</mi><mo>≥</mo><mn>2</mn></mrow></math>, whereas <math><msub><mi>V</mi><mi>n</mi></msub></math> varies among Lucas-Lehmer sequences of the second kind. We prove under some technical conditions that if the considered equation has at least three solutions (<i>n</i>, <i>m</i>) , then there is an upper bound on the size of the solutions as well as on the size of the coefficients in the characteristic polynomial of <math><msub><mi>V</mi><mi>n</mi></msub></math>.</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11090840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140945180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abbey Bourdon, David R. Gill, Jeremy Rouse, Lori D. Watson
{"title":"Odd degree isolated points on $$X_1(N)$$ with rational j-invariant","authors":"Abbey Bourdon, David R. Gill, Jeremy Rouse, Lori D. Watson","doi":"10.1007/s40993-023-00488-0","DOIUrl":"https://doi.org/10.1007/s40993-023-00488-0","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138966733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Error approximation for backwards and simple continued fractions","authors":"Cameron Bjorklund, Matthew Litman","doi":"10.1007/s40993-023-00481-7","DOIUrl":"https://doi.org/10.1007/s40993-023-00481-7","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139248580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transcendence criterion with $$(beta ,{mathcal {A}})$$-representations in some quadratic integer bases","authors":"Maryam Elaoud, Mohamed Hbaib","doi":"10.1007/s40993-023-00486-2","DOIUrl":"https://doi.org/10.1007/s40993-023-00486-2","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135142137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fast norm computation in smooth-degree Abelian number fields","authors":"Daniel J. Bernstein","doi":"10.1007/s40993-022-00402-0","DOIUrl":"https://doi.org/10.1007/s40993-022-00402-0","url":null,"abstract":"Abstract This paper presents a fast method to compute algebraic norms of integral elements of smooth-degree cyclotomic fields, and, more generally, smooth-degree Galois number fields with commutative Galois groups. The typical scenario arising in S -unit searches (for, e.g., class-group computation) is computing a $$Theta (nlog n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Θ</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> -bit norm of an element of weight $$n^{1/2+o(1)}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> <mml:mo>+</mml:mo> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> </mml:math> in a degree- n field; this method then uses $$n(log n)^{3+o(1)}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> <mml:mo>+</mml:mo> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> bit operations. An $$n(log n)^{O(1)}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> operation count was already known in two easier special cases: norms from power-of-2 cyclotomic fields via towers of power-of-2 cyclotomic subfields, and norms from multiquadratic fields via towers of multiquadratic subfields. This paper handles more general Abelian fields by identifying tower-compatible integral bases supporting fast multiplication; in particular, there is a synergy between tower-compatible Gauss-period integral bases and a fast-multiplication idea from Rader. As a baseline, this paper also analyzes various standard norm-computation techniques that apply to arbitrary number fields, concluding that all of these techniques use at least $$n^2(log n)^{2+o(1)}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>+</mml:mo> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> bit operations in the same scenario, even with fast subroutines for continued fractions and for complex FFTs. Compared to this baseline, algorithms dedicated to smooth-degree Abelian fields find each norm $","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135136491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexis LaBelle, Emily Van Bergeyk, Matthew P. Young
{"title":"Reciprocity and the kernel of Dedekind sums","authors":"Alexis LaBelle, Emily Van Bergeyk, Matthew P. Young","doi":"10.1007/s40993-023-00484-4","DOIUrl":"https://doi.org/10.1007/s40993-023-00484-4","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135292694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Zeros transfer for recursively defined polynomials","authors":"Bernhard Heim, Markus Neuhauser, Robert Tröger","doi":"10.1007/s40993-023-00480-8","DOIUrl":"https://doi.org/10.1007/s40993-023-00480-8","url":null,"abstract":"Abstract The zeros of D’Arcais polynomials, also known as Nekrasov–Okounkov polynomials, dictate the vanishing of the Fourier coefficients of powers of the Dedekind eta functions. These polynomials satisfy difference equations of hereditary type with non-constant coefficients. We relate the D’Arcais polynomials to polynomials satisfying a Volterra difference equation of convolution type. We obtain results on the transfer of the location of the zeros. As an application, we obtain an identity between Chebyshev polynomials of the second kind and 1-associated Laguerre polynomials. We obtain a new version of the Lehmer conjecture and bounds for the zeros of the Hermite polynomials.","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135342125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On further application of the zeta distribution to number theory","authors":"Takahiko Fujita, Naohiro Yoshida","doi":"10.1007/s40993-023-00485-3","DOIUrl":"https://doi.org/10.1007/s40993-023-00485-3","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135391919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}