Research in Number Theory最新文献

筛选
英文 中文
An explicit upper bound for $$L(1,chi )$$ when $$chi $$ is quadratic 当$$chi $$是二次元时,$$L(1,chi )$$的显式上界
Research in Number Theory Pub Date : 2023-10-03 DOI: 10.1007/s40993-023-00476-4
D. R. Johnston, O. Ramaré, T. Trudgian
{"title":"An explicit upper bound for $$L(1,chi )$$ when $$chi $$ is quadratic","authors":"D. R. Johnston, O. Ramaré, T. Trudgian","doi":"10.1007/s40993-023-00476-4","DOIUrl":"https://doi.org/10.1007/s40993-023-00476-4","url":null,"abstract":"Abstract We consider Dirichlet L -functions $$L(s, chi )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>L</mml:mi> <mml:mo>(</mml:mo> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>χ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> where $$chi $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>χ</mml:mi> </mml:math> is a non-principal quadratic character to the modulus q . We make explicit a result due to Pintz and Stephens by showing that $$|L(1, chi )|leqslant frac{1}{2}log q$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>χ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:mo>⩽</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>log</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:math> for all $$qgeqslant 2cdot 10^{23}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>2</mml:mn> <mml:mo>·</mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mn>23</mml:mn> </mml:msup> </mml:mrow> </mml:math> and $$|L(1, chi )|leqslant frac{9}{20}log q$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>χ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:mo>⩽</mml:mo> <mml:mfrac> <mml:mn>9</mml:mn> <mml:mn>20</mml:mn> </mml:mfrac> <mml:mo>log</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:math> for all $$qgeqslant 5cdot 10^{50}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>5</mml:mn> <mml:mo>·</mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mn>50</mml:mn> </mml:msup> </mml:mrow> </mml:math> .","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"201 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135739322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arithmetic Dijkgraaf–Witten invariants for real quadratic fields, quadratic residue graphs, and density formulas 算术Dijkgraaf-Witten不变量的实二次域,二次剩余图,和密度公式
Research in Number Theory Pub Date : 2023-09-29 DOI: 10.1007/s40993-023-00471-9
Yuqi Deng, Riku Kurimaru, Toshiki Matsusaka
{"title":"Arithmetic Dijkgraaf–Witten invariants for real quadratic fields, quadratic residue graphs, and density formulas","authors":"Yuqi Deng, Riku Kurimaru, Toshiki Matsusaka","doi":"10.1007/s40993-023-00471-9","DOIUrl":"https://doi.org/10.1007/s40993-023-00471-9","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135194021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic Fermat for signatures (r, r, p) using the modular approach 用模方法求签名(r, r, p)的渐近费马
Research in Number Theory Pub Date : 2023-09-29 DOI: 10.1007/s40993-023-00474-6
Diana Mocanu
{"title":"Asymptotic Fermat for signatures (r, r, p) using the modular approach","authors":"Diana Mocanu","doi":"10.1007/s40993-023-00474-6","DOIUrl":"https://doi.org/10.1007/s40993-023-00474-6","url":null,"abstract":"Abstract Let K be a totally real field, and $$rge 5$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;r&lt;/mml:mi&gt; &lt;mml:mo&gt;≥&lt;/mml:mo&gt; &lt;mml:mn&gt;5&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; a fixed rational prime. In this paper, we use the modular method as presented in the work of Freitas and Siksek to study non-trivial, primitive solutions $$(x,y,z) in mathcal {O}_K^3$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;x&lt;/mml:mi&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mi&gt;y&lt;/mml:mi&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mo&gt;∈&lt;/mml:mo&gt; &lt;mml:msubsup&gt; &lt;mml:mi&gt;O&lt;/mml:mi&gt; &lt;mml:mi&gt;K&lt;/mml:mi&gt; &lt;mml:mn&gt;3&lt;/mml:mn&gt; &lt;/mml:msubsup&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; of the signature ( r , r , p ) equation $$x^r+y^r=z^p$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;x&lt;/mml:mi&gt; &lt;mml:mi&gt;r&lt;/mml:mi&gt; &lt;/mml:msup&gt; &lt;mml:mo&gt;+&lt;/mml:mo&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;y&lt;/mml:mi&gt; &lt;mml:mi&gt;r&lt;/mml:mi&gt; &lt;/mml:msup&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;/mml:msup&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; (where p is a prime that varies). An adaptation of the modular method is needed, and we follow the work of Freitas which constructs Frey curves over totally real subfields of $$K(zeta _r)$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;K&lt;/mml:mi&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;ζ&lt;/mml:mi&gt; &lt;mml:mi&gt;r&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; . When $$K=mathbb {Q}$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;K&lt;/mml:mi&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mi&gt;Q&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; we get that for most of the primes $$r&lt;150$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;r&lt;/mml:mi&gt; &lt;mml:mo&gt;&lt;&lt;/mml:mo&gt; &lt;mml:mn&gt;150&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; with $$r not equiv 1 mod 8$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;r&lt;/mml:mi&gt; &lt;mml:mo&gt;≢&lt;/mml:mo&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;mml:mspace /&gt; &lt;mml:mo&gt;mod&lt;/mml:mo&gt; &lt;mml:mspace /&gt; &lt;mml:mn&gt;8&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; there are no non-trivial, primitive integer solutions ( x , y , z ) with 2| z for signatures ( r , r , p ) when p is sufficiently large. Similar results hold for quadratic fields, for example when $$K=mathbb {Q}(sqrt{2})$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;K&lt;/mml:mi&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mi&gt;Q&lt;/mml:mi&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:msqrt&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;/mml:msqrt&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; there are no non-trivial, primitive solutions $$(x,y,z)in mathcal {O}_K^3$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;x&lt;/mml:mi&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mi&gt;y&lt;/mml:mi&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mo&gt;∈&lt;/mml:mo&gt; &lt;mml:msubsup&gt; &lt;mml:mi&gt;O&lt;/mml:mi&gt; &lt;mml:mi&gt;K&lt;/mml:mi&gt; &lt;mml:mn&gt;3&lt;/mml:mn&gt; &lt;/mml:msubsup&gt; &lt;/mml","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"90 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135193836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Explicit upper bounds on the average of Euler–Kronecker constants of narrow ray class fields 窄射线类场的Euler-Kronecker常数平均值的显式上界
Research in Number Theory Pub Date : 2023-09-28 DOI: 10.1007/s40993-023-00472-8
Neelam Kandhil, Rashi Lunia, Jyothsnaa Sivaraman
{"title":"Explicit upper bounds on the average of Euler–Kronecker constants of narrow ray class fields","authors":"Neelam Kandhil, Rashi Lunia, Jyothsnaa Sivaraman","doi":"10.1007/s40993-023-00472-8","DOIUrl":"https://doi.org/10.1007/s40993-023-00472-8","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135387553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On equivariant class formulas for Anderson modules 关于Anderson模的等变类公式
Research in Number Theory Pub Date : 2023-09-26 DOI: 10.1007/s40993-023-00473-7
Tiphaine Beaumont
{"title":"On equivariant class formulas for Anderson modules","authors":"Tiphaine Beaumont","doi":"10.1007/s40993-023-00473-7","DOIUrl":"https://doi.org/10.1007/s40993-023-00473-7","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134957957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Class numbers of certain families of totally real biquadratic fields and a result of Mollin 全实数双二次域若干族的类数及Mollin的结果
Research in Number Theory Pub Date : 2023-09-21 DOI: 10.1007/s40993-023-00475-5
Nimish Kumar Mahapatra
{"title":"Class numbers of certain families of totally real biquadratic fields and a result of Mollin","authors":"Nimish Kumar Mahapatra","doi":"10.1007/s40993-023-00475-5","DOIUrl":"https://doi.org/10.1007/s40993-023-00475-5","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136136081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergence conditions for p-adic continued fractions p进连分数的收敛条件
IF 0.8
Research in Number Theory Pub Date : 2023-08-31 DOI: 10.1007/s40993-023-00470-w
N. Murru, G. Romeo, Giordano Santilli
{"title":"Convergence conditions for p-adic continued fractions","authors":"N. Murru, G. Romeo, Giordano Santilli","doi":"10.1007/s40993-023-00470-w","DOIUrl":"https://doi.org/10.1007/s40993-023-00470-w","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"18 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81659236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Algebraic and arithmetical properties of Mahler infinite products generated by the second degree polynomials 二阶多项式生成的马勒无穷积的代数和算术性质
IF 0.8
Research in Number Theory Pub Date : 2023-08-28 DOI: 10.1007/s40993-023-00469-3
D. Duverney, T. Kurosawa
{"title":"Algebraic and arithmetical properties of Mahler infinite products generated by the second degree polynomials","authors":"D. Duverney, T. Kurosawa","doi":"10.1007/s40993-023-00469-3","DOIUrl":"https://doi.org/10.1007/s40993-023-00469-3","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"10 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84302574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sharper bounds for the error term in the prime number theorem 质数定理中误差项的更清晰的界
IF 0.8
Research in Number Theory Pub Date : 2023-08-07 DOI: 10.1007/s40993-023-00454-w
Andrew Fiori, H. Kadiri, Joshua Swidinsky
{"title":"Sharper bounds for the error term in the prime number theorem","authors":"Andrew Fiori, H. Kadiri, Joshua Swidinsky","doi":"10.1007/s40993-023-00454-w","DOIUrl":"https://doi.org/10.1007/s40993-023-00454-w","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"47 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88661793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Reciprocal polynomials and curves with many points over a finite field 有限域上多点的互反多项式和曲线
IF 0.8
Research in Number Theory Pub Date : 2023-07-30 DOI: 10.1007/s40993-023-00464-8
Rohit Gupta, E. A. Mendoza, Luciane Quoos
{"title":"Reciprocal polynomials and curves with many points over a finite field","authors":"Rohit Gupta, E. A. Mendoza, Luciane Quoos","doi":"10.1007/s40993-023-00464-8","DOIUrl":"https://doi.org/10.1007/s40993-023-00464-8","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"36 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86354547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信