{"title":"An explicit upper bound for $$L(1,\\chi )$$ when $$\\chi $$ is quadratic","authors":"D. R. Johnston, O. Ramaré, T. Trudgian","doi":"10.1007/s40993-023-00476-4","DOIUrl":null,"url":null,"abstract":"Abstract We consider Dirichlet L -functions $$L(s, \\chi )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>L</mml:mi> <mml:mo>(</mml:mo> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>χ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> where $$\\chi $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>χ</mml:mi> </mml:math> is a non-principal quadratic character to the modulus q . We make explicit a result due to Pintz and Stephens by showing that $$|L(1, \\chi )|\\leqslant \\frac{1}{2}\\log q$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>χ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:mo>⩽</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>log</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:math> for all $$q\\geqslant 2\\cdot 10^{23}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>2</mml:mn> <mml:mo>·</mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mn>23</mml:mn> </mml:msup> </mml:mrow> </mml:math> and $$|L(1, \\chi )|\\leqslant \\frac{9}{20}\\log q$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>χ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:mo>⩽</mml:mo> <mml:mfrac> <mml:mn>9</mml:mn> <mml:mn>20</mml:mn> </mml:mfrac> <mml:mo>log</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:math> for all $$q\\geqslant 5\\cdot 10^{50}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>5</mml:mn> <mml:mo>·</mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mn>50</mml:mn> </mml:msup> </mml:mrow> </mml:math> .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40993-023-00476-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We consider Dirichlet L -functions $$L(s, \chi )$$ L(s,χ) where $$\chi $$ χ is a non-principal quadratic character to the modulus q . We make explicit a result due to Pintz and Stephens by showing that $$|L(1, \chi )|\leqslant \frac{1}{2}\log q$$ |L(1,χ)|⩽12logq for all $$q\geqslant 2\cdot 10^{23}$$ q⩾2·1023 and $$|L(1, \chi )|\leqslant \frac{9}{20}\log q$$ |L(1,χ)|⩽920logq for all $$q\geqslant 5\cdot 10^{50}$$ q⩾5·1050 .