当$$\chi $$是二次元时,$$L(1,\chi )$$的显式上界

IF 0.6 Q3 MATHEMATICS
D. R. Johnston, O. Ramaré, T. Trudgian
{"title":"当$$\\chi $$是二次元时,$$L(1,\\chi )$$的显式上界","authors":"D. R. Johnston, O. Ramaré, T. Trudgian","doi":"10.1007/s40993-023-00476-4","DOIUrl":null,"url":null,"abstract":"Abstract We consider Dirichlet L -functions $$L(s, \\chi )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>L</mml:mi> <mml:mo>(</mml:mo> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>χ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> where $$\\chi $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>χ</mml:mi> </mml:math> is a non-principal quadratic character to the modulus q . We make explicit a result due to Pintz and Stephens by showing that $$|L(1, \\chi )|\\leqslant \\frac{1}{2}\\log q$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>χ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:mo>⩽</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>log</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:math> for all $$q\\geqslant 2\\cdot 10^{23}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>2</mml:mn> <mml:mo>·</mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mn>23</mml:mn> </mml:msup> </mml:mrow> </mml:math> and $$|L(1, \\chi )|\\leqslant \\frac{9}{20}\\log q$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>χ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:mo>⩽</mml:mo> <mml:mfrac> <mml:mn>9</mml:mn> <mml:mn>20</mml:mn> </mml:mfrac> <mml:mo>log</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:math> for all $$q\\geqslant 5\\cdot 10^{50}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>5</mml:mn> <mml:mo>·</mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mn>50</mml:mn> </mml:msup> </mml:mrow> </mml:math> .","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"201 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An explicit upper bound for $$L(1,\\\\chi )$$ when $$\\\\chi $$ is quadratic\",\"authors\":\"D. R. Johnston, O. Ramaré, T. Trudgian\",\"doi\":\"10.1007/s40993-023-00476-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider Dirichlet L -functions $$L(s, \\\\chi )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>L</mml:mi> <mml:mo>(</mml:mo> <mml:mi>s</mml:mi> <mml:mo>,</mml:mo> <mml:mi>χ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> where $$\\\\chi $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>χ</mml:mi> </mml:math> is a non-principal quadratic character to the modulus q . We make explicit a result due to Pintz and Stephens by showing that $$|L(1, \\\\chi )|\\\\leqslant \\\\frac{1}{2}\\\\log q$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>χ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:mo>⩽</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo>log</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:math> for all $$q\\\\geqslant 2\\\\cdot 10^{23}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>2</mml:mn> <mml:mo>·</mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mn>23</mml:mn> </mml:msup> </mml:mrow> </mml:math> and $$|L(1, \\\\chi )|\\\\leqslant \\\\frac{9}{20}\\\\log q$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>χ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:mo>⩽</mml:mo> <mml:mfrac> <mml:mn>9</mml:mn> <mml:mn>20</mml:mn> </mml:mfrac> <mml:mo>log</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:math> for all $$q\\\\geqslant 5\\\\cdot 10^{50}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>5</mml:mn> <mml:mo>·</mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mn>50</mml:mn> </mml:msup> </mml:mrow> </mml:math> .\",\"PeriodicalId\":43826,\"journal\":{\"name\":\"Research in Number Theory\",\"volume\":\"201 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40993-023-00476-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40993-023-00476-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑Dirichlet L -函数$$L(s, \chi )$$ L (s, χ),其中$$\chi $$ χ是模q的非主二次特征。我们通过显示所有$$q\geqslant 2\cdot 10^{23}$$ q大于或等于2·10 23的$$|L(1, \chi )|\leqslant \frac{1}{2}\log q$$ | L (1, χ) |≤1 2 log q和所有$$q\geqslant 5\cdot 10^{50}$$ q大于或等于5·10 50的$$|L(1, \chi )|\leqslant \frac{9}{20}\log q$$ | L (1, χ) |≤9 20 log q来明确pinz和Stephens的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An explicit upper bound for $$L(1,\chi )$$ when $$\chi $$ is quadratic
Abstract We consider Dirichlet L -functions $$L(s, \chi )$$ L ( s , χ ) where $$\chi $$ χ is a non-principal quadratic character to the modulus q . We make explicit a result due to Pintz and Stephens by showing that $$|L(1, \chi )|\leqslant \frac{1}{2}\log q$$ | L ( 1 , χ ) | 1 2 log q for all $$q\geqslant 2\cdot 10^{23}$$ q 2 · 10 23 and $$|L(1, \chi )|\leqslant \frac{9}{20}\log q$$ | L ( 1 , χ ) | 9 20 log q for all $$q\geqslant 5\cdot 10^{50}$$ q 5 · 10 50 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
12.50%
发文量
88
期刊介绍: Research in Number Theory is an international, peer-reviewed Hybrid Journal covering the scope of the mathematical disciplines of Number Theory and Arithmetic Geometry. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to these research areas. It will also publish shorter research communications (Letters) covering nascent research in some of the burgeoning areas of number theory research. This journal publishes the highest quality papers in all of the traditional areas of number theory research, and it actively seeks to publish seminal papers in the most emerging and interdisciplinary areas here as well. Research in Number Theory also publishes comprehensive reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信