用模方法求签名(r, r, p)的渐近费马

IF 0.6 Q3 MATHEMATICS
Diana Mocanu
{"title":"用模方法求签名(r, r, p)的渐近费马","authors":"Diana Mocanu","doi":"10.1007/s40993-023-00474-6","DOIUrl":null,"url":null,"abstract":"Abstract Let K be a totally real field, and $$r\\ge 5$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:math> a fixed rational prime. In this paper, we use the modular method as presented in the work of Freitas and Siksek to study non-trivial, primitive solutions $$(x,y,z) \\in \\mathcal {O}_K^3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>,</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>∈</mml:mo> <mml:msubsup> <mml:mi>O</mml:mi> <mml:mi>K</mml:mi> <mml:mn>3</mml:mn> </mml:msubsup> </mml:mrow> </mml:math> of the signature ( r , r , p ) equation $$x^r+y^r=z^p$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>x</mml:mi> <mml:mi>r</mml:mi> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>y</mml:mi> <mml:mi>r</mml:mi> </mml:msup> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>z</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> </mml:math> (where p is a prime that varies). An adaptation of the modular method is needed, and we follow the work of Freitas which constructs Frey curves over totally real subfields of $$K(\\zeta _r)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>ζ</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . When $$K=\\mathbb {Q}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>=</mml:mo> <mml:mi>Q</mml:mi> </mml:mrow> </mml:math> we get that for most of the primes $$r<150$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo><</mml:mo> <mml:mn>150</mml:mn> </mml:mrow> </mml:math> with $$r \\not \\equiv 1 \\mod 8$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo>≢</mml:mo> <mml:mn>1</mml:mn> <mml:mspace /> <mml:mo>mod</mml:mo> <mml:mspace /> <mml:mn>8</mml:mn> </mml:mrow> </mml:math> there are no non-trivial, primitive integer solutions ( x , y , z ) with 2| z for signatures ( r , r , p ) when p is sufficiently large. Similar results hold for quadratic fields, for example when $$K=\\mathbb {Q}(\\sqrt{2})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>=</mml:mo> <mml:mi>Q</mml:mi> <mml:mo>(</mml:mo> <mml:msqrt> <mml:mn>2</mml:mn> </mml:msqrt> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> there are no non-trivial, primitive solutions $$(x,y,z)\\in \\mathcal {O}_K^3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>,</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>∈</mml:mo> <mml:msubsup> <mml:mi>O</mml:mi> <mml:mi>K</mml:mi> <mml:mn>3</mml:mn> </mml:msubsup> </mml:mrow> </mml:math> with $$\\sqrt{2}|z$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msqrt> <mml:mn>2</mml:mn> </mml:msqrt> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>z</mml:mi> </mml:mrow> </mml:mrow> </mml:math> for signatures (5, 5, p ), (11, 11, p ), (13, 13, p ) and sufficiently large p .","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":"90 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Asymptotic Fermat for signatures (r, r, p) using the modular approach\",\"authors\":\"Diana Mocanu\",\"doi\":\"10.1007/s40993-023-00474-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let K be a totally real field, and $$r\\\\ge 5$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:math> a fixed rational prime. In this paper, we use the modular method as presented in the work of Freitas and Siksek to study non-trivial, primitive solutions $$(x,y,z) \\\\in \\\\mathcal {O}_K^3$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>,</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>∈</mml:mo> <mml:msubsup> <mml:mi>O</mml:mi> <mml:mi>K</mml:mi> <mml:mn>3</mml:mn> </mml:msubsup> </mml:mrow> </mml:math> of the signature ( r , r , p ) equation $$x^r+y^r=z^p$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mi>x</mml:mi> <mml:mi>r</mml:mi> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>y</mml:mi> <mml:mi>r</mml:mi> </mml:msup> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>z</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> </mml:math> (where p is a prime that varies). An adaptation of the modular method is needed, and we follow the work of Freitas which constructs Frey curves over totally real subfields of $$K(\\\\zeta _r)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>ζ</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . When $$K=\\\\mathbb {Q}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>=</mml:mo> <mml:mi>Q</mml:mi> </mml:mrow> </mml:math> we get that for most of the primes $$r<150$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo><</mml:mo> <mml:mn>150</mml:mn> </mml:mrow> </mml:math> with $$r \\\\not \\\\equiv 1 \\\\mod 8$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo>≢</mml:mo> <mml:mn>1</mml:mn> <mml:mspace /> <mml:mo>mod</mml:mo> <mml:mspace /> <mml:mn>8</mml:mn> </mml:mrow> </mml:math> there are no non-trivial, primitive integer solutions ( x , y , z ) with 2| z for signatures ( r , r , p ) when p is sufficiently large. Similar results hold for quadratic fields, for example when $$K=\\\\mathbb {Q}(\\\\sqrt{2})$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>=</mml:mo> <mml:mi>Q</mml:mi> <mml:mo>(</mml:mo> <mml:msqrt> <mml:mn>2</mml:mn> </mml:msqrt> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> there are no non-trivial, primitive solutions $$(x,y,z)\\\\in \\\\mathcal {O}_K^3$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>,</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>∈</mml:mo> <mml:msubsup> <mml:mi>O</mml:mi> <mml:mi>K</mml:mi> <mml:mn>3</mml:mn> </mml:msubsup> </mml:mrow> </mml:math> with $$\\\\sqrt{2}|z$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msqrt> <mml:mn>2</mml:mn> </mml:msqrt> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>z</mml:mi> </mml:mrow> </mml:mrow> </mml:math> for signatures (5, 5, p ), (11, 11, p ), (13, 13, p ) and sufficiently large p .\",\"PeriodicalId\":43826,\"journal\":{\"name\":\"Research in Number Theory\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40993-023-00474-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40993-023-00474-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

设K为全实域,且 $$r\ge 5$$ R≥5是一个定有理数。在本文中,我们使用Freitas和Siksek的工作中提出的模块化方法来研究非平凡的原始解 $$(x,y,z) \in \mathcal {O}_K^3$$ (x, y, z)∈ok3的签名(r, r, p)方程 $$x^r+y^r=z^p$$ xr + yr = zp (p是变化的质数)需要对模方法进行改进,我们遵循Freitas的工作,在全实数子域上构造Frey曲线 $$K(\zeta _r)$$ K (ζ r)什么时候 $$K=\mathbb {Q}$$ K = Q对于大多数质数都是这样的 $$r<150$$ R &lt;150 with $$r \not \equiv 1 \mod 8$$ 当p足够大时,对于特征(R, R, p),不存在具有2| z的非平凡原始整数解(x, y, z)。类似的结果适用于二次域,例如当 $$K=\mathbb {Q}(\sqrt{2})$$ K = Q(2)没有非平凡的原始解 $$(x,y,z)\in \mathcal {O}_K^3$$ (x, y, z)∈O k3 with $$\sqrt{2}|z$$ 2 | z用于签名(5,5,p), (11,11, p), (13,13, p)和足够大的p。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic Fermat for signatures (r, r, p) using the modular approach
Abstract Let K be a totally real field, and $$r\ge 5$$ r 5 a fixed rational prime. In this paper, we use the modular method as presented in the work of Freitas and Siksek to study non-trivial, primitive solutions $$(x,y,z) \in \mathcal {O}_K^3$$ ( x , y , z ) O K 3 of the signature ( r , r , p ) equation $$x^r+y^r=z^p$$ x r + y r = z p (where p is a prime that varies). An adaptation of the modular method is needed, and we follow the work of Freitas which constructs Frey curves over totally real subfields of $$K(\zeta _r)$$ K ( ζ r ) . When $$K=\mathbb {Q}$$ K = Q we get that for most of the primes $$r<150$$ r < 150 with $$r \not \equiv 1 \mod 8$$ r 1 mod 8 there are no non-trivial, primitive integer solutions ( x , y , z ) with 2| z for signatures ( r , r , p ) when p is sufficiently large. Similar results hold for quadratic fields, for example when $$K=\mathbb {Q}(\sqrt{2})$$ K = Q ( 2 ) there are no non-trivial, primitive solutions $$(x,y,z)\in \mathcal {O}_K^3$$ ( x , y , z ) O K 3 with $$\sqrt{2}|z$$ 2 | z for signatures (5, 5, p ), (11, 11, p ), (13, 13, p ) and sufficiently large p .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
12.50%
发文量
88
期刊介绍: Research in Number Theory is an international, peer-reviewed Hybrid Journal covering the scope of the mathematical disciplines of Number Theory and Arithmetic Geometry. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to these research areas. It will also publish shorter research communications (Letters) covering nascent research in some of the burgeoning areas of number theory research. This journal publishes the highest quality papers in all of the traditional areas of number theory research, and it actively seeks to publish seminal papers in the most emerging and interdisciplinary areas here as well. Research in Number Theory also publishes comprehensive reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信