{"title":"用模方法求签名(r, r, p)的渐近费马","authors":"Diana Mocanu","doi":"10.1007/s40993-023-00474-6","DOIUrl":null,"url":null,"abstract":"Abstract Let K be a totally real field, and $$r\\ge 5$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:math> a fixed rational prime. In this paper, we use the modular method as presented in the work of Freitas and Siksek to study non-trivial, primitive solutions $$(x,y,z) \\in \\mathcal {O}_K^3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>,</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>∈</mml:mo> <mml:msubsup> <mml:mi>O</mml:mi> <mml:mi>K</mml:mi> <mml:mn>3</mml:mn> </mml:msubsup> </mml:mrow> </mml:math> of the signature ( r , r , p ) equation $$x^r+y^r=z^p$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>x</mml:mi> <mml:mi>r</mml:mi> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>y</mml:mi> <mml:mi>r</mml:mi> </mml:msup> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>z</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> </mml:math> (where p is a prime that varies). An adaptation of the modular method is needed, and we follow the work of Freitas which constructs Frey curves over totally real subfields of $$K(\\zeta _r)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>ζ</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . When $$K=\\mathbb {Q}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>=</mml:mo> <mml:mi>Q</mml:mi> </mml:mrow> </mml:math> we get that for most of the primes $$r<150$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo><</mml:mo> <mml:mn>150</mml:mn> </mml:mrow> </mml:math> with $$r \\not \\equiv 1 \\mod 8$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo>≢</mml:mo> <mml:mn>1</mml:mn> <mml:mspace /> <mml:mo>mod</mml:mo> <mml:mspace /> <mml:mn>8</mml:mn> </mml:mrow> </mml:math> there are no non-trivial, primitive integer solutions ( x , y , z ) with 2| z for signatures ( r , r , p ) when p is sufficiently large. Similar results hold for quadratic fields, for example when $$K=\\mathbb {Q}(\\sqrt{2})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>=</mml:mo> <mml:mi>Q</mml:mi> <mml:mo>(</mml:mo> <mml:msqrt> <mml:mn>2</mml:mn> </mml:msqrt> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> there are no non-trivial, primitive solutions $$(x,y,z)\\in \\mathcal {O}_K^3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>,</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>∈</mml:mo> <mml:msubsup> <mml:mi>O</mml:mi> <mml:mi>K</mml:mi> <mml:mn>3</mml:mn> </mml:msubsup> </mml:mrow> </mml:math> with $$\\sqrt{2}|z$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msqrt> <mml:mn>2</mml:mn> </mml:msqrt> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>z</mml:mi> </mml:mrow> </mml:mrow> </mml:math> for signatures (5, 5, p ), (11, 11, p ), (13, 13, p ) and sufficiently large p .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Asymptotic Fermat for signatures (r, r, p) using the modular approach\",\"authors\":\"Diana Mocanu\",\"doi\":\"10.1007/s40993-023-00474-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let K be a totally real field, and $$r\\\\ge 5$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:math> a fixed rational prime. In this paper, we use the modular method as presented in the work of Freitas and Siksek to study non-trivial, primitive solutions $$(x,y,z) \\\\in \\\\mathcal {O}_K^3$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>,</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>∈</mml:mo> <mml:msubsup> <mml:mi>O</mml:mi> <mml:mi>K</mml:mi> <mml:mn>3</mml:mn> </mml:msubsup> </mml:mrow> </mml:math> of the signature ( r , r , p ) equation $$x^r+y^r=z^p$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mi>x</mml:mi> <mml:mi>r</mml:mi> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>y</mml:mi> <mml:mi>r</mml:mi> </mml:msup> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>z</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> </mml:math> (where p is a prime that varies). An adaptation of the modular method is needed, and we follow the work of Freitas which constructs Frey curves over totally real subfields of $$K(\\\\zeta _r)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>ζ</mml:mi> <mml:mi>r</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . When $$K=\\\\mathbb {Q}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>=</mml:mo> <mml:mi>Q</mml:mi> </mml:mrow> </mml:math> we get that for most of the primes $$r<150$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo><</mml:mo> <mml:mn>150</mml:mn> </mml:mrow> </mml:math> with $$r \\\\not \\\\equiv 1 \\\\mod 8$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo>≢</mml:mo> <mml:mn>1</mml:mn> <mml:mspace /> <mml:mo>mod</mml:mo> <mml:mspace /> <mml:mn>8</mml:mn> </mml:mrow> </mml:math> there are no non-trivial, primitive integer solutions ( x , y , z ) with 2| z for signatures ( r , r , p ) when p is sufficiently large. Similar results hold for quadratic fields, for example when $$K=\\\\mathbb {Q}(\\\\sqrt{2})$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>=</mml:mo> <mml:mi>Q</mml:mi> <mml:mo>(</mml:mo> <mml:msqrt> <mml:mn>2</mml:mn> </mml:msqrt> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> there are no non-trivial, primitive solutions $$(x,y,z)\\\\in \\\\mathcal {O}_K^3$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>,</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>∈</mml:mo> <mml:msubsup> <mml:mi>O</mml:mi> <mml:mi>K</mml:mi> <mml:mn>3</mml:mn> </mml:msubsup> </mml:mrow> </mml:math> with $$\\\\sqrt{2}|z$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msqrt> <mml:mn>2</mml:mn> </mml:msqrt> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>z</mml:mi> </mml:mrow> </mml:mrow> </mml:math> for signatures (5, 5, p ), (11, 11, p ), (13, 13, p ) and sufficiently large p .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40993-023-00474-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40993-023-00474-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
设K为全实域,且 $$r\ge 5$$ R≥5是一个定有理数。在本文中,我们使用Freitas和Siksek的工作中提出的模块化方法来研究非平凡的原始解 $$(x,y,z) \in \mathcal {O}_K^3$$ (x, y, z)∈ok3的签名(r, r, p)方程 $$x^r+y^r=z^p$$ xr + yr = zp (p是变化的质数)需要对模方法进行改进,我们遵循Freitas的工作,在全实数子域上构造Frey曲线 $$K(\zeta _r)$$ K (ζ r)什么时候 $$K=\mathbb {Q}$$ K = Q对于大多数质数都是这样的 $$r<150$$ R &lt;150 with $$r \not \equiv 1 \mod 8$$ 当p足够大时,对于特征(R, R, p),不存在具有2| z的非平凡原始整数解(x, y, z)。类似的结果适用于二次域,例如当 $$K=\mathbb {Q}(\sqrt{2})$$ K = Q(2)没有非平凡的原始解 $$(x,y,z)\in \mathcal {O}_K^3$$ (x, y, z)∈O k3 with $$\sqrt{2}|z$$ 2 | z用于签名(5,5,p), (11,11, p), (13,13, p)和足够大的p。
Asymptotic Fermat for signatures (r, r, p) using the modular approach
Abstract Let K be a totally real field, and $$r\ge 5$$ r≥5 a fixed rational prime. In this paper, we use the modular method as presented in the work of Freitas and Siksek to study non-trivial, primitive solutions $$(x,y,z) \in \mathcal {O}_K^3$$ (x,y,z)∈OK3 of the signature ( r , r , p ) equation $$x^r+y^r=z^p$$ xr+yr=zp (where p is a prime that varies). An adaptation of the modular method is needed, and we follow the work of Freitas which constructs Frey curves over totally real subfields of $$K(\zeta _r)$$ K(ζr) . When $$K=\mathbb {Q}$$ K=Q we get that for most of the primes $$r<150$$ r<150 with $$r \not \equiv 1 \mod 8$$ r≢1mod8 there are no non-trivial, primitive integer solutions ( x , y , z ) with 2| z for signatures ( r , r , p ) when p is sufficiently large. Similar results hold for quadratic fields, for example when $$K=\mathbb {Q}(\sqrt{2})$$ K=Q(2) there are no non-trivial, primitive solutions $$(x,y,z)\in \mathcal {O}_K^3$$ (x,y,z)∈OK3 with $$\sqrt{2}|z$$ 2|z for signatures (5, 5, p ), (11, 11, p ), (13, 13, p ) and sufficiently large p .