Zeros transfer for recursively defined polynomials

Pub Date : 2023-11-08 DOI:10.1007/s40993-023-00480-8
Bernhard Heim, Markus Neuhauser, Robert Tröger
{"title":"Zeros transfer for recursively defined polynomials","authors":"Bernhard Heim, Markus Neuhauser, Robert Tröger","doi":"10.1007/s40993-023-00480-8","DOIUrl":null,"url":null,"abstract":"Abstract The zeros of D’Arcais polynomials, also known as Nekrasov–Okounkov polynomials, dictate the vanishing of the Fourier coefficients of powers of the Dedekind eta functions. These polynomials satisfy difference equations of hereditary type with non-constant coefficients. We relate the D’Arcais polynomials to polynomials satisfying a Volterra difference equation of convolution type. We obtain results on the transfer of the location of the zeros. As an application, we obtain an identity between Chebyshev polynomials of the second kind and 1-associated Laguerre polynomials. We obtain a new version of the Lehmer conjecture and bounds for the zeros of the Hermite polynomials.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40993-023-00480-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The zeros of D’Arcais polynomials, also known as Nekrasov–Okounkov polynomials, dictate the vanishing of the Fourier coefficients of powers of the Dedekind eta functions. These polynomials satisfy difference equations of hereditary type with non-constant coefficients. We relate the D’Arcais polynomials to polynomials satisfying a Volterra difference equation of convolution type. We obtain results on the transfer of the location of the zeros. As an application, we obtain an identity between Chebyshev polynomials of the second kind and 1-associated Laguerre polynomials. We obtain a new version of the Lehmer conjecture and bounds for the zeros of the Hermite polynomials.
分享
查看原文
递归定义多项式的零转移
D 'Arcais多项式(也称为Nekrasov-Okounkov多项式)的零表示Dedekind函数幂的傅里叶系数的消失。这些多项式满足非常系数遗传型差分方程。我们将D 'Arcais多项式与满足卷积型Volterra差分方程的多项式联系起来。我们得到了关于零位置转移的结果。作为应用,我们得到了第二类切比雪夫多项式与1相关拉盖尔多项式之间的恒等式。我们得到了Lehmer猜想的一个新版本和Hermite多项式的零点界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信