Log concavity for unimodal sequences.

Pub Date : 2024-01-01 Epub Date: 2023-12-19 DOI:10.1007/s40993-023-00490-6
Walter Bridges, Kathrin Bringmann
{"title":"Log concavity for unimodal sequences.","authors":"Walter Bridges, Kathrin Bringmann","doi":"10.1007/s40993-023-00490-6","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we prove that the number of unimodal sequences of size <i>n</i> is log-concave. These are coefficients of a mixed false modular form and have a Rademacher-type exact formula due to recent work of the second author and Nazaroglu on false theta functions. Log-concavity and higher Turán inequalities have been well-studied for (restricted) partitions and coefficients of weakly holomorphic modular forms, and analytic proofs generally require precise asymptotic series with error term. In this paper, we proceed from the exact formula for unimodal sequences to carry out this calculation. We expect our method applies to other exact formulas for coefficients of mixed mock/false modular objects.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730647/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40993-023-00490-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove that the number of unimodal sequences of size n is log-concave. These are coefficients of a mixed false modular form and have a Rademacher-type exact formula due to recent work of the second author and Nazaroglu on false theta functions. Log-concavity and higher Turán inequalities have been well-studied for (restricted) partitions and coefficients of weakly holomorphic modular forms, and analytic proofs generally require precise asymptotic series with error term. In this paper, we proceed from the exact formula for unimodal sequences to carry out this calculation. We expect our method applies to other exact formulas for coefficients of mixed mock/false modular objects.

分享
查看原文
单模态序列的对数凹性。
在本文中,我们证明了大小为 n 的单模态序列的数量是对数凹的。这些是混合假模态的系数,由于第二作者和纳扎罗格鲁最近关于假 Theta 函数的研究,它们具有拉德马赫式精确公式。对于弱全形模形式的(受限)分部和系数,对数凹性和高图兰不等式已经得到了很好的研究,解析证明一般需要精确的渐近级数和误差项。在本文中,我们从单模序列的精确公式出发来进行这一计算。我们希望我们的方法适用于其他混合模拟/虚假模态对象系数的精确公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信