Feng Xiao, Zheng Yang, Joey Allen, Guangliang Yang, Grant Williams, Wenke Lee
{"title":"Understanding and Mitigating Remote Code Execution Vulnerabilities in Cross-platform Ecosystem","authors":"Feng Xiao, Zheng Yang, Joey Allen, Guangliang Yang, Grant Williams, Wenke Lee","doi":"10.1145/3548606.3559340","DOIUrl":"https://doi.org/10.1145/3548606.3559340","url":null,"abstract":"JavaScript cross-platform frameworks are becoming increasingly popular. They help developers easily and conveniently build cross-platform applications while just needing only one JavaScript codebase. Recent security reports showed several high-profile cross-platform applications (e.g., Slack, Microsoft Teams, and Github Atom) suffered injection issues, which were often introduced by Cross-site Scripting (XSS) or embedded untrusted remote content like ads. These injections open security holes for remote web attackers, and cause serious security risks, such as allowing injected malicious code to run arbitrary local executables in victim devices (referred to as XRCE attacks). However, until now, XRCE vectors and behaviors and the root cause of XRCE were rarely studied and understood. Although the cross-platform framework developers and community responded quickly by offering multiple security features and suggestions, these mitigations were empirically proposed with unknown effectiveness. In this paper, we conduct the first systematic study of the XRCE vulnerability class in the cross-platform ecosystem. We first build a generic model for different cross-platform applications to reduce their semantic and behavioral gaps. We use this model to (1) study XRCE by comprehensively defining its attack scenarios, surfaces, and behaviors, (2) investigate and study the state-of-the-art defenses, and verify their weakness against XRCE attacks. Our study on 640 real-world cross-platform applications shows, despite the availability of existing defenses, XRCE widely affects the cross-platform ecosystem. 75% of applications may be impacted by XRCE, including Microsoft Teams. (3) Finally, we propose XGuard, a novel defense technology to automatically mitigate all XRCE variants derived from our concluded XRCE behaviors.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115227844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Second-Order Low-Randomness d + 1 Hardware Sharing of the AES","authors":"S. Dhooghe, Aein Rezaei Shahmirzadi, A. Moradi","doi":"10.1145/3548606.3560634","DOIUrl":"https://doi.org/10.1145/3548606.3560634","url":null,"abstract":"In this paper, we introduce a second-order masking of the AES using the minimal number of shares and a total of 1268 bits of randomness including the sharing of the plaintext and key. The masking of the S-box is based on the tower field decomposition of the inversion over bytes where the changing of the guards technique is used in order to re-mask the middle branch of the decomposition. The sharing of the S-box is carefully crafted such that it achieves first-order probing security without the use of randomness and such that the sharing of its output is uniform. Multi-round security is achieved by re-masking the state where we use a theoretical analysis based on the propagation of probed information to reduce the demand for fresh randomness per round. The result is a second-order masked AES which competes with the state-of-the-art in terms of latency and area, but reduces the randomness complexity over eight times over the previous known works. In addition to the corresponding theoretical analysis and proofs for the security of our masked design, it has been implemented on FPGA and evaluated via lab analysis.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115717018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Poster: Data Recovery from Ransomware Attacks via File System Forensics and Flash Translation Layer Data Extraction","authors":"Niusen Chen, Josh Dafoe, Bo Chen","doi":"10.1145/3548606.3563538","DOIUrl":"https://doi.org/10.1145/3548606.3563538","url":null,"abstract":"Ransomware is increasingly prevalent in recent years. To defend against ransomware in computing devices using flash memory as external storage, existing designs extract the entire raw flash memory data to restore the external storage to a good state. However, they cannot allow a fine-grained recovery in terms of user files as raw flash memory data do not have the semantics of \"files''. In this work, we design FFRecovery, a new ransomware defense strategy that can support fine-grained data recovery after the attacks. Our key idea is, to recover a file corrupted by the ransomware, we can 1) restore its file system metadata via file system forensics, and 2) extract its file data via raw data extraction from the flash translation layer, and 3) assemble the corresponding file system metadata and the file data. A simple prototype of FFRecovery has been developed and some preliminary results are provided.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"103 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122031209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kyeongseok Yang, Sudharssan Mohan, Yonghwi Kwon, Heejo Lee, C. Kim
{"title":"Poster: Automated Discovery of Sensor Spoofing Attacks on Robotic Vehicles","authors":"Kyeongseok Yang, Sudharssan Mohan, Yonghwi Kwon, Heejo Lee, C. Kim","doi":"10.1145/3548606.3563551","DOIUrl":"https://doi.org/10.1145/3548606.3563551","url":null,"abstract":"Robotic vehicles are playing an increasingly important role in our daily life. Unfortunately, attackers have demonstrated various sensor spoofing attacks that interfere with robotic vehicle operations, imposing serious threats. Thus, it is crucial to discover such attacks earlier than attackers so that developers can secure the vehicles. In this paper, we propose a new sensor fuzzing framework SensorFuzz that can systematically discover potential sensor spoofing attacks on robotic vehicles. It generates malicious sensor inputs by formally modeling the existing sensor attacks and leveraging high-fidelity vehicle simulation, and then analyzes the impact of the inputs on the vehicle with a resilience-based feedback mechanism.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126508184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MTD '22: 9th ACM Workshop on Moving Target Defense","authors":"Hamed Okhravi, Cliff X. Wang","doi":"10.1145/3548606.3563358","DOIUrl":"https://doi.org/10.1145/3548606.3563358","url":null,"abstract":"The ninth ACM Workshop on Moving Target Defense (MTD) Workshop is held on November 7, 2022, in conjunction with the ACM Conference on Computer and Communications Security (CCS). The main objective of the workshop is to discuss novel randomization, diversification, and dynamism techniques for computer systems and network, new metric and analysis frameworks to assess and quantify the effectiveness of MTD, and discuss challenges and opportunities that such defenses provide. This year the workshop has also incorporated a number of invited papers to capture the lessons learned from experts in this field, and highlight some of the unique opportunities for MTD in hardware and challenges of practical deployment of MTD techniques. We have constructed an exciting and diverse program of five refereed papers, two invited papers, and two invited keynote talks that will provide the participant with a vibrant and thought-provoking set of ideas and insights.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125041518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"WINK: Wireless Inference of Numerical Keystrokes via Zero-Training Spatiotemporal Analysis","authors":"Edwin Yang, Qiuye He, Song Fang","doi":"10.1145/3548606.3559339","DOIUrl":"https://doi.org/10.1145/3548606.3559339","url":null,"abstract":"Sensitive numbers play an unparalleled role in identification and authentication. Recent research has revealed plenty of side-channel attacks to infer keystrokes, which require either a training phase or a dictionary to build the relationship between an observed signal disturbance and a keystroke. However, training-based methods are unpractical as the training data about the victim are hard to obtain, while dictionary-based methods cannot infer numbers, which are not combined according to linguistic rules like letters are. We observe that typing a number creates not only a number of observed disturbances in space (each corresponding to a digit), but also a sequence of periods between each disturbance. Based upon existing work that utilizes inter-keystroke timing to infer keystrokes, we build a novel technique called WINK that combines the spatial and time domain information into a spatiotemporal feature of keystroke-disturbed wireless signals. With this spatiotemporal feature, WINK can infer typed numbers without the aid of any training. Experimental results on top of software-defined radio platforms show that WINK can vastly reduce the guesses required for breaking certain 6-digit PINs from 1 million to as low as 16, and can infer over 52% of user-chosen 6-digit PINs with less than 100 attempts.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131816666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Poster: Cryptographic Inferences for Video Deep Neural Networks","authors":"Bingyu Liu, Rujia Wang, Zhongjie Ba, Shangli Zhou, Caiwen Ding, Yuan Hong","doi":"10.1145/3548606.3563543","DOIUrl":"https://doi.org/10.1145/3548606.3563543","url":null,"abstract":"Deep neural network (DNN) services have been widely deployed in many different domains. For instance, a client may send its private input data (e.g., images, texts and videos) to the cloud for accurate inferences with pre-trained DNN models. However, significant privacy concerns would emerge in such applications due to the potential data or model sharing. Secure inferences with cryptographic techniques have been proposed to address such issues, and the system can perform secure two-party inferences between each client and cloud. However, most of existing cryptographic systems only focus on DNNs for extracting 2D features for image inferences, which have major limitations on latency and scalability for extracting spatio-temporal (3D) features from videos for accurate inferences. To address such critical deficiencies, we design and implement the first cryptographic inference system, Crypto3D, which privately infers videos on 3D features with rigorous privacy guarantees. We evaluate Crypto3D and benchmark with the state-of-the-art systems on privately inferring videos in the UCF-101 and HMDB-51 datasets with C3D and I3D models. Our results demonstrate that Crypto3D significantly outperforms existing systems (substantially extended to inferences with 3D features): execution time: 186.89x vs. CryptoDL (3D), 63.75x vs. HEANN (3D), 61.52x vs. MP-SPDZ (3D), 45x vs. E2DM (3D), 3.74x vs. Intel SGX (3D), and 3x vs. Gazelle (3D); accuracy: 82.3% vs. below 70% for all of them.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"316 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131835962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gorka Abad, O. Ersoy, S. Picek, Víctor Julio Ramírez-Durán, A. Urbieta
{"title":"Poster: Backdoor Attacks on Spiking NNs and Neuromorphic Datasets","authors":"Gorka Abad, O. Ersoy, S. Picek, Víctor Julio Ramírez-Durán, A. Urbieta","doi":"10.1145/3548606.3563532","DOIUrl":"https://doi.org/10.1145/3548606.3563532","url":null,"abstract":"Neural networks provide state-of-the-art results in many domains. Yet, they often require high energy and time-consuming training processes. Therefore, the research community is exploring alternative, energy-efficient approaches likespiking neural networks (SNNs). SNNs mimic brain neurons by encoding data into sparse spikes, resulting in energy-efficient computing. To exploit the properties of the SNNs, they can be trained with neuromorphic datasets that capture the differences in motion. SNNs, just like any neural network model, can be susceptible to security threats that make the model perform anomalously. One of the most crucial threats is the backdoor attacks that modify the training set to inject a trigger in some samples. After training, the neural network will perform correctly on the main task. However, under the presence of the trigger (backdoor) on an input sample, the attacker can control its behavior. The existing works on backdoor attacks consider standard datasets and not neuromorphic ones. In this paper, to the best of our knowledge, we present the first backdoor attacks on neuromorphic datasets. Due to the structure of neuromorphic datasets, we utilize two different triggers, i.e., static andmoving triggers. We then evaluate the performance of our backdoor using spiking neural networks, achieving top accuracy on both main and backdoor tasks, up to 99%.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130602271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weili Wang, Sen Deng, Jianyu Niu, M. Reiter, Yinqian Zhang
{"title":"ENGRAFT","authors":"Weili Wang, Sen Deng, Jianyu Niu, M. Reiter, Yinqian Zhang","doi":"10.1145/3548606.3560639","DOIUrl":"https://doi.org/10.1145/3548606.3560639","url":null,"abstract":"This paper presents the first critical analysis of building highly secure, performant, and confidential Byzantine fault-tolerant (BFT) consensus by integrating off-the-shelf crash fault-tolerant (CFT) protocols with trusted execution environments (TEEs). TEEs, like Intel SGX, are CPU extensions that offer applications a secure execution environment with strong integrity and confidentiality guarantees, by leveraging techniques like hardware-assisted isolation, memory encryption, and remote attestation. It has been speculated that when implementing a CFT protocol inside Intel SGX, one would achieve security properties similar to BFT. However, we show in this work that simply combining CFT with SGX does not directly yield a secure BFT protocol, given the wide range of attack vectors on SGX. We systematically study the fallacies in such a strawman design by performing model checking, and propose solutions to enforce safety and liveness. We also present ENGRAFT, a secure enclave-guarded Raft implementation that, firstly, achieves consensus on a cluster of 2f+1 machines tolerating up to f nodes exhibiting Byzantine-fault behavior (but well-behaved enclaves); secondly, offers a new abstraction of confidential consensus for privacy-preserving state machine replication; and finally, allows the reuse of a production-quality Raft implementation, BRaft, in the development of a highly performant BFT system.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124664623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sigstore","authors":"Zachary Newman, J. Meyers, Santiago Torres-Arias","doi":"10.1145/3548606.3560596","DOIUrl":"https://doi.org/10.1145/3548606.3560596","url":null,"abstract":"Software supply chain compromises are on the rise. From the effects of XCodeGhost to SolarWinds, hackers have identified that targeting weak points in the supply chain allows them to compromise high-value targets such as U.S. government agencies and corporate targets such as Google and Microsoft. Software signing, a promising mitigation for many of these attacks, has seen limited adoption in open-source and enterprise ecosystems. In this paper, we propose Sigstore, a system to provide widespread software signing capabilities. To do so, we designed the system to provide baseline artifact signing capabilities that minimize the adoption barrier for developers. To this end, Sigstore leverages three distinct mechanisms: First, it uses a protocol similar to ACME to authenticate developers through OIDC, tying signatures to existing and widely-used identities. Second, it enables developers to use ephemeral keys to sign their artifacts, reducing the inconvenience and risk of key management. Finally, Sigstore enables user authentication by means of artifact and identity logs, bringing transparency to software signatures. Sigstore is quickly becoming a critical piece of Internet infrastructure with more than 2.2M signatures over critical software such as Kubernetes and Distroless.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":" 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120827051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}