Poster: Automated Discovery of Sensor Spoofing Attacks on Robotic Vehicles

Kyeongseok Yang, Sudharssan Mohan, Yonghwi Kwon, Heejo Lee, C. Kim
{"title":"Poster: Automated Discovery of Sensor Spoofing Attacks on Robotic Vehicles","authors":"Kyeongseok Yang, Sudharssan Mohan, Yonghwi Kwon, Heejo Lee, C. Kim","doi":"10.1145/3548606.3563551","DOIUrl":null,"url":null,"abstract":"Robotic vehicles are playing an increasingly important role in our daily life. Unfortunately, attackers have demonstrated various sensor spoofing attacks that interfere with robotic vehicle operations, imposing serious threats. Thus, it is crucial to discover such attacks earlier than attackers so that developers can secure the vehicles. In this paper, we propose a new sensor fuzzing framework SensorFuzz that can systematically discover potential sensor spoofing attacks on robotic vehicles. It generates malicious sensor inputs by formally modeling the existing sensor attacks and leveraging high-fidelity vehicle simulation, and then analyzes the impact of the inputs on the vehicle with a resilience-based feedback mechanism.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3548606.3563551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Robotic vehicles are playing an increasingly important role in our daily life. Unfortunately, attackers have demonstrated various sensor spoofing attacks that interfere with robotic vehicle operations, imposing serious threats. Thus, it is crucial to discover such attacks earlier than attackers so that developers can secure the vehicles. In this paper, we propose a new sensor fuzzing framework SensorFuzz that can systematically discover potential sensor spoofing attacks on robotic vehicles. It generates malicious sensor inputs by formally modeling the existing sensor attacks and leveraging high-fidelity vehicle simulation, and then analyzes the impact of the inputs on the vehicle with a resilience-based feedback mechanism.
海报:自动发现对机器人车辆的传感器欺骗攻击
机器人车辆在我们的日常生活中扮演着越来越重要的角色。不幸的是,攻击者已经展示了各种传感器欺骗攻击,这些攻击会干扰机器人车辆的操作,造成严重威胁。因此,在攻击者之前发现此类攻击至关重要,这样开发人员才能保护车辆。在本文中,我们提出了一个新的传感器模糊框架SensorFuzz,它可以系统地发现机器人车辆潜在的传感器欺骗攻击。该方法通过对现有传感器攻击进行形式化建模,并利用高保真车辆仿真生成恶意传感器输入,然后利用基于弹性的反馈机制分析这些输入对车辆的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信