{"title":"WINK:通过零训练时空分析的数字击键无线推理","authors":"Edwin Yang, Qiuye He, Song Fang","doi":"10.1145/3548606.3559339","DOIUrl":null,"url":null,"abstract":"Sensitive numbers play an unparalleled role in identification and authentication. Recent research has revealed plenty of side-channel attacks to infer keystrokes, which require either a training phase or a dictionary to build the relationship between an observed signal disturbance and a keystroke. However, training-based methods are unpractical as the training data about the victim are hard to obtain, while dictionary-based methods cannot infer numbers, which are not combined according to linguistic rules like letters are. We observe that typing a number creates not only a number of observed disturbances in space (each corresponding to a digit), but also a sequence of periods between each disturbance. Based upon existing work that utilizes inter-keystroke timing to infer keystrokes, we build a novel technique called WINK that combines the spatial and time domain information into a spatiotemporal feature of keystroke-disturbed wireless signals. With this spatiotemporal feature, WINK can infer typed numbers without the aid of any training. Experimental results on top of software-defined radio platforms show that WINK can vastly reduce the guesses required for breaking certain 6-digit PINs from 1 million to as low as 16, and can infer over 52% of user-chosen 6-digit PINs with less than 100 attempts.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"WINK: Wireless Inference of Numerical Keystrokes via Zero-Training Spatiotemporal Analysis\",\"authors\":\"Edwin Yang, Qiuye He, Song Fang\",\"doi\":\"10.1145/3548606.3559339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensitive numbers play an unparalleled role in identification and authentication. Recent research has revealed plenty of side-channel attacks to infer keystrokes, which require either a training phase or a dictionary to build the relationship between an observed signal disturbance and a keystroke. However, training-based methods are unpractical as the training data about the victim are hard to obtain, while dictionary-based methods cannot infer numbers, which are not combined according to linguistic rules like letters are. We observe that typing a number creates not only a number of observed disturbances in space (each corresponding to a digit), but also a sequence of periods between each disturbance. Based upon existing work that utilizes inter-keystroke timing to infer keystrokes, we build a novel technique called WINK that combines the spatial and time domain information into a spatiotemporal feature of keystroke-disturbed wireless signals. With this spatiotemporal feature, WINK can infer typed numbers without the aid of any training. Experimental results on top of software-defined radio platforms show that WINK can vastly reduce the guesses required for breaking certain 6-digit PINs from 1 million to as low as 16, and can infer over 52% of user-chosen 6-digit PINs with less than 100 attempts.\",\"PeriodicalId\":435197,\"journal\":{\"name\":\"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3548606.3559339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3548606.3559339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
WINK: Wireless Inference of Numerical Keystrokes via Zero-Training Spatiotemporal Analysis
Sensitive numbers play an unparalleled role in identification and authentication. Recent research has revealed plenty of side-channel attacks to infer keystrokes, which require either a training phase or a dictionary to build the relationship between an observed signal disturbance and a keystroke. However, training-based methods are unpractical as the training data about the victim are hard to obtain, while dictionary-based methods cannot infer numbers, which are not combined according to linguistic rules like letters are. We observe that typing a number creates not only a number of observed disturbances in space (each corresponding to a digit), but also a sequence of periods between each disturbance. Based upon existing work that utilizes inter-keystroke timing to infer keystrokes, we build a novel technique called WINK that combines the spatial and time domain information into a spatiotemporal feature of keystroke-disturbed wireless signals. With this spatiotemporal feature, WINK can infer typed numbers without the aid of any training. Experimental results on top of software-defined radio platforms show that WINK can vastly reduce the guesses required for breaking certain 6-digit PINs from 1 million to as low as 16, and can infer over 52% of user-chosen 6-digit PINs with less than 100 attempts.