Sigstore

Zachary Newman, J. Meyers, Santiago Torres-Arias
{"title":"Sigstore","authors":"Zachary Newman, J. Meyers, Santiago Torres-Arias","doi":"10.1145/3548606.3560596","DOIUrl":null,"url":null,"abstract":"Software supply chain compromises are on the rise. From the effects of XCodeGhost to SolarWinds, hackers have identified that targeting weak points in the supply chain allows them to compromise high-value targets such as U.S. government agencies and corporate targets such as Google and Microsoft. Software signing, a promising mitigation for many of these attacks, has seen limited adoption in open-source and enterprise ecosystems. In this paper, we propose Sigstore, a system to provide widespread software signing capabilities. To do so, we designed the system to provide baseline artifact signing capabilities that minimize the adoption barrier for developers. To this end, Sigstore leverages three distinct mechanisms: First, it uses a protocol similar to ACME to authenticate developers through OIDC, tying signatures to existing and widely-used identities. Second, it enables developers to use ephemeral keys to sign their artifacts, reducing the inconvenience and risk of key management. Finally, Sigstore enables user authentication by means of artifact and identity logs, bringing transparency to software signatures. Sigstore is quickly becoming a critical piece of Internet infrastructure with more than 2.2M signatures over critical software such as Kubernetes and Distroless.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":" 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3548606.3560596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Software supply chain compromises are on the rise. From the effects of XCodeGhost to SolarWinds, hackers have identified that targeting weak points in the supply chain allows them to compromise high-value targets such as U.S. government agencies and corporate targets such as Google and Microsoft. Software signing, a promising mitigation for many of these attacks, has seen limited adoption in open-source and enterprise ecosystems. In this paper, we propose Sigstore, a system to provide widespread software signing capabilities. To do so, we designed the system to provide baseline artifact signing capabilities that minimize the adoption barrier for developers. To this end, Sigstore leverages three distinct mechanisms: First, it uses a protocol similar to ACME to authenticate developers through OIDC, tying signatures to existing and widely-used identities. Second, it enables developers to use ephemeral keys to sign their artifacts, reducing the inconvenience and risk of key management. Finally, Sigstore enables user authentication by means of artifact and identity logs, bringing transparency to software signatures. Sigstore is quickly becoming a critical piece of Internet infrastructure with more than 2.2M signatures over critical software such as Kubernetes and Distroless.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信