Leon Visscher, Mohammed Alghazwi, Dimka Karastoyanova, F. Turkmen
{"title":"Poster","authors":"Leon Visscher, Mohammed Alghazwi, Dimka Karastoyanova, F. Turkmen","doi":"10.1145/3548606.3563548","DOIUrl":"https://doi.org/10.1145/3548606.3563548","url":null,"abstract":"Genome-wide association studies (GWAS) focus on finding associations between genotypes and phenotypes such as susceptibility to diseases. Since genetic data is extremely sensitive and long-lived, individuals and organizations are reluctant to share their data for analysis. This paper proposes two solutions for a fully decentralized and privacy-preserving system for performing minor allele frequency analysis on multiple data sets. Homomorphic encryption and zero-knowledge proofs are used in combination with a blockchain system to achieve data privacy and enable verifiability. Preliminary evaluation of the solutions reveals several important challenges such as handling large cipher texts in smart contracts and reuse of the encrypted data for specific researcher queries that need to be tackled in order to make the solutions more practical.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"1221 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121170581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guannan Liu, Daiping Liu, Shuai Hao, Xing Gao, Kun Sun, Haining Wang
{"title":"Ready Raider One: Exploring the Misuse of Cloud Gaming Services","authors":"Guannan Liu, Daiping Liu, Shuai Hao, Xing Gao, Kun Sun, Haining Wang","doi":"10.1145/3548606.3560647","DOIUrl":"https://doi.org/10.1145/3548606.3560647","url":null,"abstract":"Cloud gaming has become an emerging computing paradigm in recent years, allowing computer games to offload complex graphics and logic computation to the cloud. To deliver a smooth and high-quality gaming experience, cloud gaming services have invested abundant computing resources in the cloud, including adequate CPUs, top-tier GPUs, and high-bandwidth Internet connections. Unfortunately, the abundant computing resources offered by cloud gaming are vulnerable to misuse and exploitation for malicious purposes. In this paper, we present an in-depth study on security vulnerabilities in cloud gaming services. Specifically, we reveal that adversaries can purposely inject malicious programs/URLs into the cloud gaming services via game mods. Using the provided features such as in-game subroutines, game launch options, and built-in browsers, adversaries are able to execute the injected malicious programs/URLs in cloud gaming services. To demonstrate that such vulnerabilities pose a serious threat, we conduct four proof-of-concept attacks on cloud gaming services. Two of them are to abuse the CPUs and GPUs in cloud gaming services to mine cryptocurrencies with attractive profits and train machine learning models at a trivial cost. The other two are to exploit the high-bandwidth connections provided by cloud gaming for malicious Command & Control and censorship circumvention. Finally, we present several countermeasures for cloud gaming services to protect their valuable assets from malicious exploitation.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"163 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129163718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bernardo David, Bernardo Magri, C. Matt, J. Nielsen, Daniel Tschudi
{"title":"GearBox","authors":"Bernardo David, Bernardo Magri, C. Matt, J. Nielsen, Daniel Tschudi","doi":"10.1145/3548606.3559375","DOIUrl":"https://doi.org/10.1145/3548606.3559375","url":null,"abstract":"Sharding is an emerging technique to overcome scalability issues on blockchain based public ledgers. Without sharding, every node in the network has to listen to and process all ledger protocol messages. The basic idea of sharding is to parallelize the ledger protocol: the nodes are divided into smaller subsets that each take care of a fraction of the original load by executing lighter instances of the ledger protocol, also called shards. The smaller the shards, the higher the efficiency, as by increasing parallelism there is less overhead in the shard consensus. In this vein, we propose a novel approach that leverages the sharding safety-liveness dichotomy. We separate the liveness and safety in shard consensus, allowing us to dynamically tune shard parameters to achieve essentially optimal efficiency for the current corruption ratio of the system. We start by sampling a relatively small shard (possibly with a small honesty ratio), and we carefully trade-off safety for liveness in the consensus mechanism to tolerate small honesty without losing safety. However, for a shard to be live, a higher honesty ratio is required in the worst case. To detect liveness failures, we use a so-called control chain that is always live and safe. Shards that are detected to be not live are resampled with increased shard size and liveness tolerance until they are live, ensuring that all shards are always safe and run with optimal efficiency. As a concrete example, considering a population of 10K parties with at most 30% corruption and 60-bit security, previous designs required over 5800 parties in each shard to guarantee security. Our design requires only 1713 parties in the worst case with maximal corruption, and in the optimistic case works with only~35 parties without compromising security. Moreover, in this highly concurrent execution setting, it is paramount to guarantee that both the sharded ledger protocol and its sub protocols (i.e., the shards) are secure under composition. To prove the security of our approach, we present ideal functionalities capturing a sharded ledger as well as ideal functionalities capturing the control chain and individual shard consensus, which needs adjustable liveness. We further formalize our protocols and prove that they securely realize the sharded ledger functionality in the UC framework.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128569308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Checkmate '22: Research on offensive and defensive techniques in the context of Man At The End (MATE) attacks","authors":"G. Richard, Tim Blazytko","doi":"10.1145/3548606.3564247","DOIUrl":"https://doi.org/10.1145/3548606.3564247","url":null,"abstract":"The MATE (Man-At-The-End) model, in which an attacker has access to the target software and/or hardware environment to be exploited and the ability to observe and modify that environment, poses unique challenges for both defense and offense. The CheckMATE workshop focuses on exploration of both offensive and defensives techniques under this model. CheckMATE will provide a discussion forum for researchers and industrial practitioners that are exploring theorentical, practical, and emperical studies in this interesting area of security.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115806945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seulbae Kim, Major Liu, J. Rhee, Yuseok Jeon, Yonghwi Kwon, C. Kim
{"title":"DriveFuzz","authors":"Seulbae Kim, Major Liu, J. Rhee, Yuseok Jeon, Yonghwi Kwon, C. Kim","doi":"10.1145/3548606.3560558","DOIUrl":"https://doi.org/10.1145/3548606.3560558","url":null,"abstract":"Autonomous driving has become real; semi-autonomous driving vehicles in an affordable price range are already on the streets, and major automotive vendors are actively developing full self-driving systems to deploy them in this decade. Before rolling the products out to the end-users, it is critical to test and ensure the safety of the autonomous driving systems, consisting of multiple layers intertwined in a complicated way. However, while safety-critical bugs may exist in any layer and even across layers, relatively little attention has been given to testing the entire driving system across all the layers. Prior work mainly focuses on white-box testing of individual layers and preventing attacks on each layer. In this paper, we aim at holistic testing of autonomous driving systems that have a whole stack of layers integrated in their entirety. Instead of looking into the individual layers, we focus on the vehicle states that the system continuously changes in the driving environment. This allows us to design DriveFuzz, a new systematic fuzzing framework that can uncover potential vulnerabilities regardless of their locations. DriveFuzz automatically generates and mutates driving scenarios based on diverse factors leveraging a high-fidelity driving simulator. We build novel driving test oracles based on the real-world traffic rules to detect safety-critical misbehaviors, and guide the fuzzer towards such misbehaviors through driving quality metrics referring to the physical states of the vehicle. DriveFuzz has discovered 30 new bugs in various layers of two autonomous driving systems (Autoware and CARLA Behavior Agent) and three additional bugs in the CARLA simulator. We further analyze the impact of these bugs and how an adversary may exploit them as security vulnerabilities to cause critical accidents in the real world.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"360 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115895938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Uncovering Intent based Leak of Sensitive Data in Android Framework","authors":"Hao Zhou, Xiapu Luo, Haoyu Wang, Haipeng Cai","doi":"10.1145/3548606.3560601","DOIUrl":"https://doi.org/10.1145/3548606.3560601","url":null,"abstract":"To prevent unauthorized apps from retrieving the sensitive data, Android framework enforces a permission based access control. However, it has long been known that, to bypass the access control, unauthorized apps can intercept the Intent objects which are sent by authorized apps and carry the retrieved sensitive data. We find that there is a new (previously unknown) attack surface in Android framework that can be exploited by unauthorized apps to violate the access control. Specifically, we discover that part of Intent objects that are sent by Android framework and carry sensitive data can be received by unauthorized apps, resulting in the leak of sensitive data. In this paper, we conduct the first systematic investigation on the new attack surface namely the Intent based leak of sensitive data in Android framework. To automatically uncover such kind of vulnerability in Android framework, we design and develop a new tool named LeakDetector, which finds the Intent objects sent by Android framework that can be received by unauthorized apps and carry the sensitive data. Applying LeakDetector to 10 commercial Android systems, we find that it can effectively uncover the Intent based leak of sensitive data in Android framework. Specifically, we discover 36 exploitable cases of such kind of data leak, which can be abused by unauthorized apps to steal the sensitive data, violating the access control. At the time of writing, 16 of them have been confirmed by Google, Samsung, and Xiaomi, and we received bug bounty rewards from these mobile vendors.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116016548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengyao Xie, Chenggang Wu, Yinqian Zhang, Jiali Xu, Yuanming Lai, Yan Kang, Wen Wang, Zhe Wang
{"title":"CETIS","authors":"Mengyao Xie, Chenggang Wu, Yinqian Zhang, Jiali Xu, Yuanming Lai, Yan Kang, Wen Wang, Zhe Wang","doi":"10.1145/3548606.3559344","DOIUrl":"https://doi.org/10.1145/3548606.3559344","url":null,"abstract":"Intel control-flow enforcement technology (CET) is a new hardware feature available in recent Intel processors. It supports the coarse-grained control-flow integrity for software to defeat memory corruption attacks. In this paper, we retrofit CET, particularly the write-protected shadow pages of CET used for implementing shadow stacks, to develop a generic and efficient intra-process memory isolation mechanism, dubbed CETIS. To provide user-friendly interfaces, a CETIS framework was developed, which provides memory file abstraction for the isolated memory regions and a set of APIs to access said regions. CETIS also comes with a compiler-assisted tool chain for users to build secure applications easily. The practicality of using CETIS to protect CPI, CFIXX, and JIT-compilers was demonstrated, and the evaluation reveals that CETIS is performed better than state-of-the-art intra-memory isolation mechanisms, such as MPK.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"81 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117251074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"StrongBox: A GPU TEE on Arm Endpoints","authors":"Yunjie Deng, Chenxu Wang, Shunchang Yu, Shiqing Liu, Zhenyu Ning, Kevin Leach, Jin Li, Shoumeng Yan, Zheng-hao He, Jiannong Cao, Fengwei Zhang","doi":"10.1145/3548606.3560627","DOIUrl":"https://doi.org/10.1145/3548606.3560627","url":null,"abstract":"A wide range of Arm endpoints leverage integrated and discrete GPUs to accelerate computation such as image processing and numerical processing applications. However, in spite of these important use cases, Arm GPU security has yet to be scrutinized by the community. By exploiting vulnerabilities in the kernel, attackers can directly access sensitive data used during GPU computing, such as personally-identifiable image data in computer vision tasks. Existing work has used Trusted Execution Environments (TEEs) to address GPU security concerns on Intel-based platforms, while there are numerous architectural differences that lead to novel technical challenges in deploying TEEs for Arm GPUs. In addition, extant Arm-based GPU defenses are intended for secure machine learning, and lack generality. There is a need for generalizable and efficient Arm-based GPU security mechanisms. To address these problems, we present StrongBox, the first GPU TEE for secured general computation on Arm endpoints. During confidential computation on Arm GPUs, StrongBox provides an isolated execution environment by ensuring exclusive access to the GPU. Our approach is based in part on a dynamic, fine-grained memory protection policy as Arm-based GPUs typically share a unified memory with the CPU, a stark contrast with Intel-based platforms. Furthermore, by characterizing GPU buffers as secure and non-secure, StrongBox reduces redundant security introspection operations to control access to sensitive data used by the GPU, ultimately reducing runtime overhead. Our design leverages the widely-deployed Arm TrustZone and generic Arm features, without hardware modification or architectural changes. We prototype StrongBox using an off-the-shelf Arm Mali GPU and perform an extensive evaluation. Our results show that StrongBox successfully ensures the GPU computing security with a low (4.70% - 15.26%) overhead across several indicative benchmarks.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116754308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chengjun Cai, Yichen Zang, Cong Wang, Xiaohua Jia, Qian Wang
{"title":"Vizard: A Metadata-hiding Data Analytic System with End-to-End Policy Controls","authors":"Chengjun Cai, Yichen Zang, Cong Wang, Xiaohua Jia, Qian Wang","doi":"10.1145/3548606.3559349","DOIUrl":"https://doi.org/10.1145/3548606.3559349","url":null,"abstract":"Owner-centric control is a widely adopted method for easing owners' concerns over data abuses and motivating them to share their data out to gain collective knowledge. However, while many control enforcement techniques have been proposed, privacy threats due to the metadata leakage therein are largely neglected in existing works. Unfortunately, a sophisticated attacker can infer very sensitive information based on either owners' data control policies or their analytic task participation histories (e.g., participating in a mental illness or cancer study can reveal their health conditions). To address this problem, we introduce Vizard, a metadata-hiding analytic system that enables privacy-hardened and enforceable control for owners. Vizard is built with a tailored suite of lightweight cryptographic tools and designs that help us efficiently handle analytic queries over encrypted data streams coming in real-time (like heart rates). We propose extension designs to further enable advanced owner-centric controls (with AND, OR, NOT operators) and provide owners with release control to additionally regulate how the result should be protected before deliveries. We develop a prototype of Vizard that is interfaced with Apache Kafka, and the evaluation results demonstrate the practicality of Vizard for large-scale and metadata-hiding analytics over data streams.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114476733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Geoffroy Couteau, Dahmun Goudarzi, Michael Klooß, Michael Reichle
{"title":"Sharp","authors":"Geoffroy Couteau, Dahmun Goudarzi, Michael Klooß, Michael Reichle","doi":"10.1145/3548606.3560628","DOIUrl":"https://doi.org/10.1145/3548606.3560628","url":null,"abstract":"We provide optimized range proofs, called Sharp, in discrete logarithm and hidden order groups, based on square decomposition. In the former setting, we build on the paradigm of Couteau et al. (Eurocrypt '21) and optimize their range proof (from now on, CKLR) in several ways: (1) We introduce batching via vector commitments and an adapted ∑;-protocol. (2) We introduce a new group switching strategy to reduce communication. (3) As repetitions are necessary to instantiate CKLR in standard groups, we provide a novel batch shortness test that allows for cheaper repetitions. The analysis of our test is nontrivial and forms a core technical contribution of our work. For example, for λ = 128 bit security and B = 64 bit ranges for N = 1 (resp. N = 8) proof(s), we reduce the proof size by 34% (resp. 75%) in arbitrary groups, and by 66% (resp. 88%) in groups of order 256-bit, compared to CKLR. As Sharp and CKLR proofs satisfy a \"relaxed\" notion of security, we show how to enhance their security with one additional hidden order group element. In RSA groups, this reduces the size of state of the art range proofs (Couteau et al., Eurocrypt '17) by 77% (λ = 128, B = 64, N = 1). Finally, we implement our most optimized range proof. Compared to the state of the art Bulletproofs (Bünz et al., S&P 2018), our benchmarks show a very significant runtime improvement. Eventually, we sketch some applications of our new range proofs.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"112 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115158860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}