Solar Energy最新文献

筛选
英文 中文
Optimal study of a hybrid solar-biomass heating system for rural household in cold regions of China 中国寒冷地区农村家庭太阳能-生物质混合供暖系统的优化研究
IF 6 2区 工程技术
Solar Energy Pub Date : 2024-11-16 DOI: 10.1016/j.solener.2024.113101
Jing Li , Xuebin Ma , Ganhua Shen , Yucheng Ren , Yuwei Ma , Ziwei Yu , Qiugang Wang , Reaihan E , Ning Ai , Jie Li , Mingguo Ma , Junfeng Li
{"title":"Optimal study of a hybrid solar-biomass heating system for rural household in cold regions of China","authors":"Jing Li ,&nbsp;Xuebin Ma ,&nbsp;Ganhua Shen ,&nbsp;Yucheng Ren ,&nbsp;Yuwei Ma ,&nbsp;Ziwei Yu ,&nbsp;Qiugang Wang ,&nbsp;Reaihan E ,&nbsp;Ning Ai ,&nbsp;Jie Li ,&nbsp;Mingguo Ma ,&nbsp;Junfeng Li","doi":"10.1016/j.solener.2024.113101","DOIUrl":"10.1016/j.solener.2024.113101","url":null,"abstract":"<div><h3>Background</h3><div>Currently, the heating measures for rural households face significant disadvantages such as reliance on fossil fuels, poor thermal comfort, and high carbon emissions.</div></div><div><h3>Objectives</h3><div>This study designed a solar-coupled domestic biomass boiler parallel heating system (SBPHS) with collaborative optimization.</div></div><div><h3>Methods</h3><div>The SBPHS was developed based on a typical rural residence in cold regions. Subsequently, a parametric analysis was performed on both component configuration and operating parameters. Furthermore, we determined optimal configurations of the SBPHS using the life cycle cost (LCC) as the optimization objective. Solar fraction, total power consumption, effective heat collection and boiler runtime were used as performance indicators to evaluate the system.</div></div><div><h3>Results</h3><div>Simulation results were in good agreement with measured data. Parametric analyses indicated that component design should consider energy performance and economics, especially in rural areas. As a start/stop signal for the collector system, the collector-tank temperature difference significantly affected effective heat collection and system energy consumption. Further, flow rates had significant impacts on all performance indicators, especially collector flow rate. Considering the optimum operating conditions throughout the system’s life cycle, Hooke-Jeeves algorithm was adopted to optimize component configurations and operating parameters simultaneously. Post-optimization, LCC of the SBPHS was reduced by 12.3 %. The optimized system could achieve a solar energy share of up to 62.7 %, total energy consumption reduction of 13.6 %, and biomass fuel consumption reduction of 26.3 %, indicating significant energy savings.</div></div><div><h3>Conclusion</h3><div>These findings enhance the feasibility of implementing the SBPHS in rural residences in cold areas and provide theoretical foundation for the design and operation of system.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113101"},"PeriodicalIF":6.0,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and analysis of inorganic tandem architecture with synergistically optimized BaSnS3 top and AgTaS3 bottom perovskite Sub-Cells 设计和分析具有协同优化的顶部 BaSnS3 和底部 AgTaS3 包晶子电池的无机串联结构
IF 6 2区 工程技术
Solar Energy Pub Date : 2024-11-16 DOI: 10.1016/j.solener.2024.113111
Tanvir Ahmed , Sheikh Noman Shiddique , Abdul Kuddus , Mainul Hossain , Shinichiro Mouri , Jaker Hossain
{"title":"Design and analysis of inorganic tandem architecture with synergistically optimized BaSnS3 top and AgTaS3 bottom perovskite Sub-Cells","authors":"Tanvir Ahmed ,&nbsp;Sheikh Noman Shiddique ,&nbsp;Abdul Kuddus ,&nbsp;Mainul Hossain ,&nbsp;Shinichiro Mouri ,&nbsp;Jaker Hossain","doi":"10.1016/j.solener.2024.113111","DOIUrl":"10.1016/j.solener.2024.113111","url":null,"abstract":"<div><div>Perovskite materials are revolutionizing the solar cell (SC) industry, continually enhancing their properties and establishing a prominent photovoltaic technology. Among these, BaSnS<sub>3</sub> (BTS) and AgTaS<sub>3</sub> (ATS) stand out for their strong potential as absorber layers. These inorganic chalcogenide perovskites address the drawbacks of their organic counterparts, being both lead-free and non-toxic, thereby making them highly suitable for photovoltaic (PV) applications. The exploration of BTS and ATS as absorber layers in a tandem solar cell’s top and bottom cells has yielded remarkable outcomes. The innovative tandem solar cell design features a top cell structured as n-WS<sub>2</sub>/<em>p</em>-BaSnS<sub>3</sub>/<em>p</em><sup>+</sup>-MoS<sub>2</sub> and a bottom cell configured as <em>n</em>-WS<em><sub>2</sub></em>/<em>p</em>-AgTaS<sub>3</sub>/<em>p</em><sup>+</sup>-GeS. This theoretical study using SCAPS-1D demonstrates a high efficiency of 42.57 % with a <em>V</em><sub>OC</sub> of 2.03 V, a <em>J</em><sub>SC</sub> of 23.29 mA/cm<sup>2</sup>, and an <em>FF</em> of 89.85 %. These impressive results are achieved with adjusted layer thickness, carrier doping and defect levels, highlighting the strong potential of BaSnS<sub>3</sub> and AgTaS<sub>3</sub> photoactive materials. The findings reveal the viability of innovative, all-inorganic perovskite-based tandem solar cells, offering a promising avenue for future sustainable and high-efficiency photovoltaic device technologies.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113111"},"PeriodicalIF":6.0,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing and optimizing the lead-free double perovskite Cs2AgBiI6/Cs2AgBiBr6 bilayer perovskite solar cell 设计和优化无铅双包晶 Cs2AgBiI6/Cs2AgBiBr6 双层包晶太阳能电池
IF 6 2区 工程技术
Solar Energy Pub Date : 2024-11-16 DOI: 10.1016/j.solener.2024.113087
Huan Chen , Chaoen Li , Wenquan Zhou , Jili Wen , Mei Ma , Yuelin Chen , Kai Huang , Yang Ling , Jiang Wu , Yang Zhao , Xin Zeng , Yuxiang Wu
{"title":"Designing and optimizing the lead-free double perovskite Cs2AgBiI6/Cs2AgBiBr6 bilayer perovskite solar cell","authors":"Huan Chen ,&nbsp;Chaoen Li ,&nbsp;Wenquan Zhou ,&nbsp;Jili Wen ,&nbsp;Mei Ma ,&nbsp;Yuelin Chen ,&nbsp;Kai Huang ,&nbsp;Yang Ling ,&nbsp;Jiang Wu ,&nbsp;Yang Zhao ,&nbsp;Xin Zeng ,&nbsp;Yuxiang Wu","doi":"10.1016/j.solener.2024.113087","DOIUrl":"10.1016/j.solener.2024.113087","url":null,"abstract":"<div><div>Due to their potential to be an absorber layer in perovskite solar cells with cheap cost, outstanding stability, and high efficiency, lead-free double perovskite Cs<sub>2</sub>AgBiI<sub>6</sub> and Cs<sub>2</sub>AgBiBr<sub>6</sub> have attracted tremendous attention recently. In this work, Cs<sub>2</sub>AgBiI<sub>6</sub> and Cs<sub>2</sub>AgBiBr<sub>6</sub> are introduced to create a perovskite-perovskite bilayer solar cell FTO/ETL/Cs<sub>2</sub>AgBiI<sub>6</sub>/Cs<sub>2</sub>AgBiBr<sub>6</sub>/HTL/Au through SCAPS-1D. The Cs<sub>2</sub>AgBiI<sub>6</sub>/Cs<sub>2</sub>AgBiBr<sub>6</sub> double absorber layer structure significantly reduces lead toxicity while improving the device’s stability and light absorption capabilities, according to the results. We chose the optimal hole transport layer (HTL) and electron transport layer (ETL) to examine the impacts of several HTLs and ETLs on the PSC. The device’s performance appears to be significantly impacted by the energy level alignment of the absorber and transport layers, and that ideal energy band structure facilitates the carriers’ transportation and separation. Through numerical simulations, the impacts of some factors containing the absorber layer thickness, defect density and doping concentration of the perovskite layers, operating temperature, and different back-contact electrodes, were examined. The optimized results are PCE = 34.36 %, FF = 93.35 %, J<sub>sc</sub> = 24.78 mA/cm<sup>2</sup>, and V<sub>oc</sub> = 1.48 V. This work demonstrates that double perovskite Cs<sub>2</sub>AgBiI<sub>6</sub> and Cs<sub>2</sub>AgBiBr<sub>6</sub> hold great potential for application in photovoltaic and optoelectronic devices.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113087"},"PeriodicalIF":6.0,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring bamboo based bio-photovoltaic devices: Pioneering sustainable solar innovations- A comprehensive review 探索基于竹子的生物光伏装置:开拓可持续太阳能创新--综合评述
IF 6 2区 工程技术
Solar Energy Pub Date : 2024-11-16 DOI: 10.1016/j.solener.2024.113039
Biswajeet Acharya , Amulyaratna Behera , Bimalendu Chowdhury , Srikanta Moharana , Suresh Sagadevan , Suchismeeta Behera
{"title":"Exploring bamboo based bio-photovoltaic devices: Pioneering sustainable solar innovations- A comprehensive review","authors":"Biswajeet Acharya ,&nbsp;Amulyaratna Behera ,&nbsp;Bimalendu Chowdhury ,&nbsp;Srikanta Moharana ,&nbsp;Suresh Sagadevan ,&nbsp;Suchismeeta Behera","doi":"10.1016/j.solener.2024.113039","DOIUrl":"10.1016/j.solener.2024.113039","url":null,"abstract":"<div><div>The widespread adoption of eco-friendly and renewable energy sources has driven to the demand for cutting-edge innovations. This in-depth analysis examines the feasibility of bamboo-based biophotovoltaic devices as ground-breaking solutions in the search of environmentally friendly solar applications. This typical review summarizes and also evaluates the utilization of bamboo to harness solar energy for generating clean, renewable power. Furthermore, this present analysis investigates the merits and demerits of these tools, providing further information about their potential as a long-term solar power production. The results of this analysis explores the capacity of biophotovoltaic devices made from bamboo and their importance in developing green energy solutions for a more environmentally friendly and sustainable future.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113039"},"PeriodicalIF":6.0,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating tracking bifacial solar PV based agrivoltaics system across the UK 评估英国各地基于农业光伏系统的跟踪式双面太阳能光伏发电系统
IF 6 2区 工程技术
Solar Energy Pub Date : 2024-11-16 DOI: 10.1016/j.solener.2024.113102
Shanza Neda Hussain, Aritra Ghosh
{"title":"Evaluating tracking bifacial solar PV based agrivoltaics system across the UK","authors":"Shanza Neda Hussain,&nbsp;Aritra Ghosh","doi":"10.1016/j.solener.2024.113102","DOIUrl":"10.1016/j.solener.2024.113102","url":null,"abstract":"<div><div>The increasing competition of land for various purposes has led to the consideration of using it effectively while catering to<!--> <!-->energy and food security. This study investigates the integration of photovoltaics (PV) systems with farmlands that cultivate potatoes in the UK, analysing energy production and crop yields across eleven regions. Using PVsyst for solar simulations and DSSAT for crop modelling for various PV setups including both monofacial and bifacial systems in both fixed and tracking configurations were examined. This work revealed significant regional disparities in solar irradiance, temperature, and precipitation, impacting both electricity and agricultural output. This study indicates that tracking bifacial 440Wp systems (TB) generated an average of 24.6% more energy than static bifacial (SB) systems with the highest difference of 26.37% in Brighton but at the cost of reduced crop yields. The land equivalent ratio (LER) varies, with SB systems generally achieving higher values with the highest obtained value of 1.39 reflecting their balance between energy and crop production. Financial analysis demonstrates that same area tracking monofacial (SATM) configurations offer the highest internal rate of return (IRR) though there is a huge variation in the outcomes when comparing the lowest and highest there is a difference of 41.16%. The levelized cost of electricity (LCOE) was the lowest, with regions receiving more irradiance (Brighton) indicating the increased economic feasibility for the proposed system. This evaluation emphasizes the potential of agrivoltaics to optimise land use for dual purposes, promoting sustainable energy and food production while highlighting the importance of considering local climatic conditions and system design to utilise the benefits of agrivoltaics.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113102"},"PeriodicalIF":6.0,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing performance of Cu2ZnSn(S, Se)4 solar cells via non-uniform gradient and flat bands induced by Cd substitution 通过镉替代引起的非均匀梯度和平坦带提高 Cu2ZnSn(S,Se)4 太阳能电池的性能
IF 6 2区 工程技术
Solar Energy Pub Date : 2024-11-15 DOI: 10.1016/j.solener.2024.113063
Mengge Li , Ding Ma , Chunkai Wang , Ting Wang , Bin Yao , Yongfeng Li , Zhanhui Ding , Yuting Sun , Xiaofei Sun , Yan Zhu , Ning Ding , Liyuan Shi
{"title":"Enhancing performance of Cu2ZnSn(S, Se)4 solar cells via non-uniform gradient and flat bands induced by Cd substitution","authors":"Mengge Li ,&nbsp;Ding Ma ,&nbsp;Chunkai Wang ,&nbsp;Ting Wang ,&nbsp;Bin Yao ,&nbsp;Yongfeng Li ,&nbsp;Zhanhui Ding ,&nbsp;Yuting Sun ,&nbsp;Xiaofei Sun ,&nbsp;Yan Zhu ,&nbsp;Ning Ding ,&nbsp;Liyuan Shi","doi":"10.1016/j.solener.2024.113063","DOIUrl":"10.1016/j.solener.2024.113063","url":null,"abstract":"<div><div>Severe carrier recombination at the back (Mo/CZTSSe) and front (CZTSSe/CdS) interfaces is one of the most important reasons hindering the development of open-circuit voltage (V<sub>OC</sub>) and fill factor (FF) in Cu<sub>2</sub>ZnSn(S, Se)<sub>4</sub> (CZTSSe) solar cells. In this study, we intentionally introduced a non-uniform distribution of Cd impurities into the middle of the absorber layer, designing and fabricating a CZTSSe solar cell with a non-uniform “V”-shaped graded bandgap structure. This structure is aimed at providing a favorable back electric field, reducing carrier recombination at the Mo/CZTSSe interface. The PCE of the CZTSSe solar cell improved from 8.88 % to 10.89 %, significantly enhancing FF and V<sub>OC</sub>. Additionally, we utilized the solar cell simulation software SCAPS-1D to simulate the position of the minimum point in the V-shaped graded bandgap and combined this with experimental results to explore the effect of Cd doping location on the performance of CZTSSe solar cells. It’s worth noting that the non-uniform Cd-doped solar cell displayed exceptional stability, demonstrating an efficiency enhancement from 10.28 % to 10.94 % after being exposed to air for 30 days.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"283 ","pages":"Article 113063"},"PeriodicalIF":6.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-wideband solar absorber based on refractory metal titanium for high-performance photothermal conversion 基于难熔金属钛的高性能光热转换超宽带太阳能吸收器
IF 6 2区 工程技术
Solar Energy Pub Date : 2024-11-15 DOI: 10.1016/j.solener.2024.113095
Shiyi Song , Yan Chen , Shanjun Chen , Zao Yi , Liping Fu
{"title":"Ultra-wideband solar absorber based on refractory metal titanium for high-performance photothermal conversion","authors":"Shiyi Song ,&nbsp;Yan Chen ,&nbsp;Shanjun Chen ,&nbsp;Zao Yi ,&nbsp;Liping Fu","doi":"10.1016/j.solener.2024.113095","DOIUrl":"10.1016/j.solener.2024.113095","url":null,"abstract":"<div><div>In recent years, metamaterial absorbers are widely used in solar energy harvesting and utilizations. Nevertheless, it is difficult to achieve simultaneously high absorption, insensitivity with a large angle of incidence, polarization independence and, highly efficient photothermal conversion over a wide range of wavelengths for existing solar energy absorbers. Herein, an ultra-wideband and high-performance solar perfect absorber for the spectral range of 200–5000 nm has been proposed. It consists of a Ti metal substrate, a Ti-Al<sub>2</sub>O<sub>3</sub> pattern layer with etched square annular air cavity, and a Si<sub>3</sub>N<sub>4</sub> dielectric layer surrounding the bottom of the pattern layer. Over the spectral range spanning from 200 to 5000 nm, the average absorbance is 97.7 %, and the minimum absorbance is above 91 %. In solar energy system, its total photothermal conversion efficiency is 90.9 % at 1000 K, with as much as 96.41 % of sunlight absorbed. The interactions between surface plasmon resonance (SPR), guided mode resonance (GMR), magnetic resonance (MR), and cavity resonance (CR) are responsible for excellent performance of the ultra-broadband absorber. Additionally, the absorber is not sensitive to wide angles of incidence and is polarization independent. More interestingly, large angle incidence at TE and TM polarizations has equally excellent performance. Besides, the absorber meets a certain tolerance for geometric manufacturing errors, allowing for low-cost practical manufacturing. The designed absorber is expected to be applied to solar cells and thermo-photovoltaic devices.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113095"},"PeriodicalIF":6.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing efficiency: A study on all-inorganic CsSnBr3 metal halide perovskites with micro-band offset using DFT and SCAPS-1D modeling 提高效率:利用 DFT 和 SCAPS-1D 建模研究具有微带偏移的无机 CsSnBr3 金属卤化物包光体
IF 6 2区 工程技术
Solar Energy Pub Date : 2024-11-15 DOI: 10.1016/j.solener.2024.113051
Shazia Akhtar Dar , Basharat Want , Brajendra Singh Sengar
{"title":"Enhancing efficiency: A study on all-inorganic CsSnBr3 metal halide perovskites with micro-band offset using DFT and SCAPS-1D modeling","authors":"Shazia Akhtar Dar ,&nbsp;Basharat Want ,&nbsp;Brajendra Singh Sengar","doi":"10.1016/j.solener.2024.113051","DOIUrl":"10.1016/j.solener.2024.113051","url":null,"abstract":"<div><div>In this study, we simulated a non-toxic, all-inorganic CsSnBr<sub>3</sub> perovskite solar cell (PSC). Using first-principles PBE functional analysis, we evaluated the optoelectronic characteristics of the CsSnBr<sub>3</sub> and performed numerical simulations and optimizations with SCAPS-1D. Our findings indicate that CsSnBr<sub>3</sub>, possessing a direct band gap of 1.78 eV, represents an optimal inorganic perovskite material for PSCs. The micro-band offset (MBO) energy structure of ZnOS/CsSnBr<sub>3</sub>/CuI, characterized by a small energy band offset, generates an intrinsic electric field (Ebi) that greatly improves carrier transport and facilitates the separation of photogenerated electron-hole pairs, resulting in a peak power conversion efficiency (PCE) of 18.89 %. Optimization of this structure involved adjusting the doping concentrations in the electron transport layer (ETL) and hole transport layer (HTL) to 10<sup>17</sup> cm<sup>−3</sup> for the ETL and 10<sup>19</sup> cm<sup>−3</sup>, respectively. Increasing the absorber layer thickness improved photovoltaic characteristics, although high defect densities negatively impacted carrier diffusion length and PSC performance. Additionally, we examined the effect of varying metal back electrode (BME) and the thermal stability analysis on the PV performance of the device The micro-band offset (MBO) energy structure, as revealed by our analysis of the carrier transport pathway, enhances energy level transitions and facilitates more efficient carrier transport. Under optimal conditions, the PSCs with the MBO-energy structure demonstrated exceptional performance, with PCE = 23.98 %, Voc = 1.40 V, Jsc = 19.68 mA/cm<sup>2</sup>, and FF = 86.74 %. These results highlight the significant potential of the MBO-energy structure for Sn-based PSCs. They offer valuable insights for developing stable, highly efficient, cost-effective, and environmentally friendly CsSnBr<sub>3</sub>-based PSCs.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113051"},"PeriodicalIF":6.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wind-induced vibration response and suppression of the cable-truss flexible support photovoltaic module array 电缆桁架柔性支撑光伏组件阵列的风致振动响应与抑制
IF 6 2区 工程技术
Solar Energy Pub Date : 2024-11-15 DOI: 10.1016/j.solener.2024.113096
Yunqiang Wu , Yue Wu , Ying Sun , Xiaoying Sun
{"title":"Wind-induced vibration response and suppression of the cable-truss flexible support photovoltaic module array","authors":"Yunqiang Wu ,&nbsp;Yue Wu ,&nbsp;Ying Sun ,&nbsp;Xiaoying Sun","doi":"10.1016/j.solener.2024.113096","DOIUrl":"10.1016/j.solener.2024.113096","url":null,"abstract":"<div><div>The flexible photovoltaic module support system, which can be used in complex and long-span environments, has been widely studied and applied in recent years. In this study, the wind-induced vibration characteristics and the suppression measures of a 35-meter-span cable-truss support photovoltaic module system array are studied. Firstly, based on the similarity theory of the wind tunnel test, the scaled aeroelastic test model is made and verified. Then, the wind-induced vibration characteristics and group shelter effects of the array are studied and the influence of the initial prestress of the main cables is discussed. Finally, the effective wind suppression measures are proposed by adding the connection cables and inclined cables and verified by the wind tunnel test. The results show that the maximum wind-induced response of the flexible PV array appears in the first row of the windward row under different wind directions, the wind-induced vibration in the middle region is significantly reduced due to the shelter of the PV array and the amplitude of wind-induced vibration in the wake region will be amplified. At 0° wind direction, the wind-induced vibration shelter effect is more obvious. The improvement of the initial prestress of the main cable is ineffective in improving the wind resistance. When no wind suppression measures are taken, the critical wind speed of the new photovoltaic system is 36.1 m/s, which can meet the requirements of most inland areas. Wind suppression measures can effectively improve the wind resistance of photovoltaic arrays, and the critical wind speed can reach 45 m/s.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113096"},"PeriodicalIF":6.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving 11.23 % efficiency in CZTSSe solar cells via defect control and interface contact optimization 通过缺陷控制和界面接触优化实现 11.23 % 的 CZTSSe 太阳能电池效率
IF 6 2区 工程技术
Solar Energy Pub Date : 2024-11-15 DOI: 10.1016/j.solener.2024.112913
Letu Siqin, Chenjun Yang, Jingyuan Guo, Yutian Wang, Lei Wang, Yuan Li, Yiming Wang, Shuyu Li, Xiangyu Chen, Hongmei Luan, Ruijian Liu, Chengjun Zhu
{"title":"Achieving 11.23 % efficiency in CZTSSe solar cells via defect control and interface contact optimization","authors":"Letu Siqin,&nbsp;Chenjun Yang,&nbsp;Jingyuan Guo,&nbsp;Yutian Wang,&nbsp;Lei Wang,&nbsp;Yuan Li,&nbsp;Yiming Wang,&nbsp;Shuyu Li,&nbsp;Xiangyu Chen,&nbsp;Hongmei Luan,&nbsp;Ruijian Liu,&nbsp;Chengjun Zhu","doi":"10.1016/j.solener.2024.112913","DOIUrl":"10.1016/j.solener.2024.112913","url":null,"abstract":"<div><div>The high open-circuit voltage deficit (V<sub>OC, def</sub>) caused by structural imperfections in the absorber layer and charge loss during carrier transport is a critical barrier affecting the performance of Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub> (CZTSSe) devices. In this work, Ag was added to the DMF-based Cu<sup>+</sup>-Sn<sup>4+</sup> system, which significantly improved the crystal morphology and electrical properties of the absorber layer. Additionally, optimizing the selenization process not only reduced surface roughness and eliminated voids at the bottom of the absorber layer but also resulted in the formation of a MoSe<sub>2</sub> back interface layer with a more suitable thickness. These measures collectively enhanced the overall quality of the absorber layer, reducing the formation of deep-level defect clusters and effectively boosting carrier transport efficiency. Consequently, the concentration of bulk and interfacial defects decreased, and the impact of potential barriers on carrier movement was minimized. With these comprehensive improvements, the power conversion efficiency of CZTSSe solar cells increased from 8.48 % to 11.23 %. Our research demonstrates that optimizing the structure of the absorber layer can effectively enhance the performance of CZTSSe solar cells, providing valuable insights for the fabrication of high-efficiency devices in the future.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"283 ","pages":"Article 112913"},"PeriodicalIF":6.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信