Coupled effects of strain and halogen substitution on the structural, optoelectronic, and photovoltaic characteristics of Pb-Free Cs2AgInBr6: Density functional theory approach using HSE, BSE, and numerical methods
{"title":"Coupled effects of strain and halogen substitution on the structural, optoelectronic, and photovoltaic characteristics of Pb-Free Cs2AgInBr6: Density functional theory approach using HSE, BSE, and numerical methods","authors":"Khalid Said , Jihane Znaki , Fatima Zahra Znaki , Mohamed Adadi , Hassane Moustabchir , Samir Chtita , Adil Touimi Benjelloun , Souad Elkhattabi","doi":"10.1016/j.solener.2025.113782","DOIUrl":null,"url":null,"abstract":"<div><div>The discovery of lead-free halide double perovskites <span><math><mrow><msub><mrow><mtext>Cs</mtext></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mtext>AgInBr</mtext></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mtext>Cs</mtext></mrow><mrow><mn>2</mn></mrow></msub><mtext>AgInBr</mtext><mn>5</mn><mtext>Cl</mtext></mrow></math></span> offers a promising avenue for the development of new absorber materials in solar cells. In this study, ab initio calculations based on density functional theory (DFT) are performed to investigate the impact of biaxial strain from +3% to -3% on the structural, optoelectronic, and photovoltaic properties of these compounds. Negative formation energies confirm their thermodynamic stability, enhanced by the partial substitution of bromine for chlorine. The band gap evolution under biaxial strain reveals high flexibility, suggesting a strong potential for adaptation to meet the requirements of targeted applications. Both structures exhibit high absorption coefficients (of the order of <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup><mspace></mspace><msup><mrow><mtext>cm</mtext></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>) in the UV-visible region, and their absorption spectra show a redshift and peak broadening under stress, indicating an improvement in optoelectronic efficiency. In addition, the static dielectric constant (SDC) increased depending on biaxial compressive strain for <span><math><mrow><msub><mrow><mtext>Cs</mtext></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mtext>AgInBr</mtext></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span>. Finally, The photovoltaic performances of <span><math><mrow><msub><mrow><mtext>Cs</mtext></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mtext>AgInBr</mtext></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mtext>Cs</mtext></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mtext>AgInBr</mtext></mrow><mrow><mn>5</mn></mrow></msub><mtext>Cl</mtext></mrow></math></span> show significant enhancement, particularly under the application of low compressive strain, a maximum power conversion efficiency of 25.50% is achieved for <span><math><mrow><msub><mrow><mtext>Cs</mtext></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mtext>AgInBr</mtext></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> under a -2% biaxial strain. These results highlight the impact of biaxial strain on the optoelectronic properties and performances of <span><math><mrow><msub><mrow><mtext>Cs</mtext></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mtext>AgInBr</mtext></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mtext>Cs</mtext></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mtext>AgInBr</mtext></mrow><mrow><mn>5</mn></mrow></msub><mtext>Cl</mtext></mrow></math></span>, opening promising perspectives for their use in advanced optical devices.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"299 ","pages":"Article 113782"},"PeriodicalIF":6.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25005456","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The discovery of lead-free halide double perovskites and offers a promising avenue for the development of new absorber materials in solar cells. In this study, ab initio calculations based on density functional theory (DFT) are performed to investigate the impact of biaxial strain from +3% to -3% on the structural, optoelectronic, and photovoltaic properties of these compounds. Negative formation energies confirm their thermodynamic stability, enhanced by the partial substitution of bromine for chlorine. The band gap evolution under biaxial strain reveals high flexibility, suggesting a strong potential for adaptation to meet the requirements of targeted applications. Both structures exhibit high absorption coefficients (of the order of ) in the UV-visible region, and their absorption spectra show a redshift and peak broadening under stress, indicating an improvement in optoelectronic efficiency. In addition, the static dielectric constant (SDC) increased depending on biaxial compressive strain for . Finally, The photovoltaic performances of and show significant enhancement, particularly under the application of low compressive strain, a maximum power conversion efficiency of 25.50% is achieved for under a -2% biaxial strain. These results highlight the impact of biaxial strain on the optoelectronic properties and performances of and , opening promising perspectives for their use in advanced optical devices.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass