{"title":"Graphical posterior predictive classification: Bayesian model averaging with particle Gibbs","authors":"Tatjana Pavlenko, Felix Rios","doi":"10.1090/tpms/1198","DOIUrl":"https://doi.org/10.1090/tpms/1198","url":null,"abstract":"In this study, we present a multi-class graphical Bayesian predictive classifier that incorporates the uncertainty in the model selection into the standard Bayesian formalism. For each class, the dependence structure underlying the observed features is represented by a set of decomposable Gaussian graphical models. Emphasis is then placed on the <italic>Bayesian model averaging</italic> which takes full account of the class-specific model uncertainty by averaging over the posterior graph model probabilities. An explicit evaluation of the model probabilities is well known to be infeasible. To address this issue, we consider the particle Gibbs strategy of J. Olsson, T. Pavlenko, and F. L. Rios [Electron. J. Statist. 13 (2019), no. 2, 2865–2897] for posterior sampling from decomposable graphical models which utilizes the so-called <italic>Christmas tree algorithm</italic> of J. Olsson, T. Pavlenko, and F. L. Rios [Stat. Comput. 32 (2022), no. 5, Paper No. 80, 18] as proposal kernel. We also derive a strong hyper Markov law which we call the <italic>hyper normal Wishart law</italic> that allows to perform the resultant Bayesian calculations locally. The proposed predictive graphical classifier reveals superior performance compared to the ordinary Bayesian predictive rule that does not account for the model uncertainty, as well as to a number of out-of-the-box classifiers.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135695501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Takayuki Yamada, Tetsuto Himeno, Annika Tillander, Tatjana Pavlenko
{"title":"Test for mean matrix in GMANOVA model under heteroscedasticity and non-normality for high-dimensional data","authors":"Takayuki Yamada, Tetsuto Himeno, Annika Tillander, Tatjana Pavlenko","doi":"10.1090/tpms/1200","DOIUrl":"https://doi.org/10.1090/tpms/1200","url":null,"abstract":"This paper is concerned with the testing bilateral linear hypothesis on the mean matrix in the context of the generalized multivariate analysis of variance (GMANOVA) model when the dimensions of the observed vector may exceed the sample size, the design may become unbalanced, the population may not be normal, or the true covariance matrices may be unequal. The suggested testing methodology can treat many problems such as the one- and two-way MANOVA tests, the test for parallelism in profile analysis, etc., as specific ones. We propose a bias-corrected estimator of the Frobenius norm for the mean matrix, which is a key component of the test statistic. The null and non-null distributions are derived under a general high-dimensional asymptotic framework that allows the dimensionality to arbitrarily exceed the sample size of a group, thereby establishing consistency for the testing criterion. The accuracy of the proposed test in a finite sample is investigated through simulations conducted for several high-dimensional scenarios and various underlying population distributions in combination with different within-group covariance structures. Finally, the proposed test is applied to a high-dimensional two-way MANOVA problem for DNA microarray data.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135648619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tomasz Kozubowski, Stepan Mazur, Krzysztof Podgórski
{"title":"Matrix variate generalized asymmetric Laplace distributions","authors":"Tomasz Kozubowski, Stepan Mazur, Krzysztof Podgórski","doi":"10.1090/tpms/1197","DOIUrl":"https://doi.org/10.1090/tpms/1197","url":null,"abstract":"The generalized asymmetric Laplace (GAL) distributions, also known as the variance/mean-gamma models, constitute a popular flexible class of distributions that can account for peakedness, skewness, and heavier-than-normal tails, often observed in financial or other empirical data. We consider extensions of the GAL distribution to the matrix variate case, which arise as covariance mixtures of matrix variate normal distributions. Two different mixing mechanisms connected with the nature of the random scaling matrix are considered, leading to what we term matrix variate GAL distributions of Type I and II. While Type I matrix variate GAL distribution has been studied before, there is no comprehensive account of Type II in the literature, except for their rather brief treatment as a special case of matrix variate generalized hyperbolic distributions. With this work we fill this gap, and present an account for basic distributional properties of Type II matrix variate GAL distributions. In particular, we derive their probability density function and the characteristic function, as well as provide stochastic representations related to matrix variate gamma distribution. We also show that this distribution is closed under linear transformations, and study the relevant marginal distributions. In addition, we also briefly account for Type I and discuss the intriguing connections with Type II. We hope that this work will be useful in the areas where matrix variate distributions provide an appropriate probabilistic tool for three-way or, more generally, panel data sets, which can arise across different applications.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135696137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A note on the prediction error of principal component regression in high dimensions","authors":"Laura Hucker, Martin Wahl","doi":"10.1090/tpms/1196","DOIUrl":"https://doi.org/10.1090/tpms/1196","url":null,"abstract":"We analyze the prediction error of principal component regression (PCR) and prove high probability bounds for the corresponding squared risk conditional on the design. Our first main result shows that PCR performs comparably to the oracle method obtained by replacing empirical principal components by their population counterparts, provided that an effective rank condition holds. On the other hand, if the latter condition is violated, then empirical eigenvalues start to have a significant upward bias, resulting in a self-induced regularization of PCR. Our approach relies on the behavior of empirical eigenvalues, empirical eigenvectors and the excess risk of principal component analysis in high-dimensional regimes.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135695493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Statistical inference for models driven by 𝑛-th order fractional Brownian motion","authors":"Hicham Chaouch, H. Maroufy, Mohamed Omari","doi":"10.1090/tpms/1185","DOIUrl":"https://doi.org/10.1090/tpms/1185","url":null,"abstract":"<p>We consider the following stochastic integral equation <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X left-parenthesis t right-parenthesis equals mu t plus sigma integral Subscript 0 Superscript t Baseline phi left-parenthesis s right-parenthesis d upper B Subscript upper H Superscript n Baseline left-parenthesis s right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mi>μ<!-- μ --></mml:mi>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo>+</mml:mo>\u0000 <mml:mi>σ<!-- σ --></mml:mi>\u0000 <mml:msubsup>\u0000 <mml:mo>∫<!-- ∫ --></mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 <mml:mi>t</mml:mi>\u0000 </mml:msubsup>\u0000 <mml:mi>φ<!-- φ --></mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>s</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mi>d</mml:mi>\u0000 <mml:msubsup>\u0000 <mml:mi>B</mml:mi>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msubsup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>s</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">X(t)=mu t + sigma int _0^t varphi (s) dB_H^n(s)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t greater-than-or-equal-to 0\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo>≥<!-- ≥ --></mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">tgeq 0</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, where <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi\">\u0000 <mml:semantics>\u0000 <mml:mi>φ<!-- φ --></mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">varphi</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is a known function and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B Subscript upper H Superscript n\">\u0000 <mml:semantics>\u0000 <mml:msubsup>\u0000 <mml:mi>B</mml:mi>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msubsup>\u0000 <mml:annotation encoding=\"application/x-tex\">B^n_H</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is the <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\u0000 <mml:semantics>\u0000 <mml:mi>n</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-th order fractional Brownian motion. We provide explicit maximum likelihood estimators for both <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http:","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41595813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Approximations for success run probabilities in Bernoulli trials","authors":"S. Kaczkowski","doi":"10.1090/tpms/1186","DOIUrl":"https://doi.org/10.1090/tpms/1186","url":null,"abstract":"Concise and convenient bounds are obtained for the probability mass and cumulative distribution functions associated with the first success run of length \u0000\u0000 \u0000 k\u0000 k\u0000 \u0000\u0000 in a sequence of \u0000\u0000 \u0000 n\u0000 n\u0000 \u0000\u0000 Bernoulli trials. Results are compared to an approximation obtained by the Stein–Chen method as well as to bounds obtained from statistical reliability theory. These approximation formulas are used to obtain precise estimates of the expectation value associated with the occurrence of at least one success run of length \u0000\u0000 \u0000 k\u0000 k\u0000 \u0000\u0000 within \u0000\u0000 \u0000 N\u0000 N\u0000 \u0000\u0000 concurrent sequences of Bernoulli trials.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45708546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A comment on rates of convergence for density function in extreme value theory and Rényi entropy","authors":"Ali Saeb","doi":"10.1090/tpms/1191","DOIUrl":"https://doi.org/10.1090/tpms/1191","url":null,"abstract":"De Haan and Resnick [Ann. Probab. 10 (1982), no. 2, 396–413] have shown that the Rényi entropy of order \u0000\u0000 \u0000 β\u0000 beta\u0000 \u0000\u0000 (\u0000\u0000 \u0000 \u0000 β\u0000 >\u0000 1\u0000 \u0000 beta >1\u0000 \u0000\u0000) of normalized sample maximum of independent and identically distributed (iid) random variables with continuous differentiable density converges to the Rényi entropy of order \u0000\u0000 \u0000 β\u0000 beta\u0000 \u0000\u0000 of a max stable law. In this paper, we review the rate of convergence for density function in extreme value theory. Finally, we study the rate of convergence for Rényi entropy in the case of normalized sample maxima.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45040022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distribution of the product of a Wishart matrix and a normal vector","authors":"Koshiro Yonenaga, A. Suzukawa","doi":"10.1090/tpms/1193","DOIUrl":"https://doi.org/10.1090/tpms/1193","url":null,"abstract":"We consider the distribution of the product of a Wishart matrix and a normal vector with uncommon covariance matrices. We derive the stochastic representation which reduces the computational burden for the generation of realizations of the product. Using this representation, the density function and higher order moments of the product are derived. In a numerical illustration, we investigate some properties of the distribution of the product. We further suggest the Edgeworth type expansions for the product, and we observe that the suggested approximations provide a good performance for moderately large degrees of freedom of a Wishart matrix.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47755032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On recurrence and transience of some Lévy-type processes in ℝ","authors":"V. Knopova","doi":"10.1090/tpms/1187","DOIUrl":"https://doi.org/10.1090/tpms/1187","url":null,"abstract":"<p>In this note we prove some sufficient conditions for transience and recurrence of a Lévy-type process in <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {R}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, whose generator defined on the test functions is of the form <disp-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L f left-parenthesis x right-parenthesis equals integral Underscript double-struck upper R Endscripts left-parenthesis f left-parenthesis x plus u right-parenthesis minus f left-parenthesis x right-parenthesis minus nabla f left-parenthesis x right-parenthesis dot u double-struck 1 Subscript StartAbsoluteValue u EndAbsoluteValue less-than-or-equal-to 1 Baseline right-parenthesis nu left-parenthesis x comma d u right-parenthesis comma f element-of upper C Subscript normal infinity Superscript 2 Baseline left-parenthesis double-struck upper R right-parenthesis period\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:msub>\u0000 <mml:mo>∫<!-- ∫ --></mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 </mml:mrow>\u0000 </mml:msub>\u0000 <mml:mrow>\u0000 <mml:mo>(</mml:mo>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo>+</mml:mo>\u0000 <mml:mi>u</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\u0000 <mml:mi>f</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>⋅<!-- ⋅ --></mml:mo>\u0000 <mml:mi>u</mml:mi>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mn mathvariant=\"double-struck\">1</mml:mn>\u0000 </mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo stretchy=\"false\">|</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mi>u</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo stretchy=\"false\">|</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mo>≤<!-- ≤ --></mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:mrow>\u0000 ","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45133077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gaussian Volterra processes: Asymptotic growth and statistical estimation","authors":"Y. Mishura, K. Ralchenko, S. Shklyar","doi":"10.1090/tpms/1190","DOIUrl":"https://doi.org/10.1090/tpms/1190","url":null,"abstract":"The paper is devoted to three-parametric self-similar Gaussian Volterra processes that generalize fractional Brownian motion. We study the asymptotic growth of such processes and the properties of long- and short-range dependence. Then we consider the problem of the drift parameter estimation for Ornstein–Uhlenbeck process driven by Gaussian Volterra process under consideration. We construct a strongly consistent estimator and investigate its asymptotic properties. Namely, we prove that it has the Cauchy asymptotic distribution.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44591218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}