Distribution of the product of a Wishart matrix and a normal vector

IF 0.4 Q4 STATISTICS & PROBABILITY
Koshiro Yonenaga, A. Suzukawa
{"title":"Distribution of the product of a Wishart matrix and a normal vector","authors":"Koshiro Yonenaga, A. Suzukawa","doi":"10.1090/tpms/1193","DOIUrl":null,"url":null,"abstract":"We consider the distribution of the product of a Wishart matrix and a normal vector with uncommon covariance matrices. We derive the stochastic representation which reduces the computational burden for the generation of realizations of the product. Using this representation, the density function and higher order moments of the product are derived. In a numerical illustration, we investigate some properties of the distribution of the product. We further suggest the Edgeworth type expansions for the product, and we observe that the suggested approximations provide a good performance for moderately large degrees of freedom of a Wishart matrix.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the distribution of the product of a Wishart matrix and a normal vector with uncommon covariance matrices. We derive the stochastic representation which reduces the computational burden for the generation of realizations of the product. Using this representation, the density function and higher order moments of the product are derived. In a numerical illustration, we investigate some properties of the distribution of the product. We further suggest the Edgeworth type expansions for the product, and we observe that the suggested approximations provide a good performance for moderately large degrees of freedom of a Wishart matrix.
一个Wishart矩阵和一个法向量的乘积的分布
我们考虑了具有不常见协方差矩阵的Wishart矩阵与法向量乘积的分布。我们推导了随机表示,减少了生成产品实现的计算负担。利用这种表示,导出了乘积的密度函数和高阶矩。在一个数值说明中,我们研究了乘积分布的一些性质。我们进一步提出了该乘积的Edgeworth型展开式,并且我们观察到,所建议的近似对于Wishart矩阵的中等大自由度提供了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信