高斯Volterra过程:渐近增长与统计估计

IF 0.4 Q4 STATISTICS & PROBABILITY
Y. Mishura, K. Ralchenko, S. Shklyar
{"title":"高斯Volterra过程:渐近增长与统计估计","authors":"Y. Mishura, K. Ralchenko, S. Shklyar","doi":"10.1090/tpms/1190","DOIUrl":null,"url":null,"abstract":"The paper is devoted to three-parametric self-similar Gaussian Volterra processes that generalize fractional Brownian motion. We study the asymptotic growth of such processes and the properties of long- and short-range dependence. Then we consider the problem of the drift parameter estimation for Ornstein–Uhlenbeck process driven by Gaussian Volterra process under consideration. We construct a strongly consistent estimator and investigate its asymptotic properties. Namely, we prove that it has the Cauchy asymptotic distribution.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gaussian Volterra processes: Asymptotic growth and statistical estimation\",\"authors\":\"Y. Mishura, K. Ralchenko, S. Shklyar\",\"doi\":\"10.1090/tpms/1190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is devoted to three-parametric self-similar Gaussian Volterra processes that generalize fractional Brownian motion. We study the asymptotic growth of such processes and the properties of long- and short-range dependence. Then we consider the problem of the drift parameter estimation for Ornstein–Uhlenbeck process driven by Gaussian Volterra process under consideration. We construct a strongly consistent estimator and investigate its asymptotic properties. Namely, we prove that it has the Cauchy asymptotic distribution.\",\"PeriodicalId\":42776,\"journal\":{\"name\":\"Theory of Probability and Mathematical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tpms/1190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了推广分数布朗运动的三个参数自相似高斯-Volterra过程。我们研究了这类过程的渐近增长和长短程依赖性的性质。然后,我们考虑高斯-Volterra过程驱动的Ornstein–Uhlenbeck过程的漂移参数估计问题。我们构造了一个强一致估计量,并研究了它的渐近性质。也就是说,我们证明了它具有柯西渐近分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussian Volterra processes: Asymptotic growth and statistical estimation
The paper is devoted to three-parametric self-similar Gaussian Volterra processes that generalize fractional Brownian motion. We study the asymptotic growth of such processes and the properties of long- and short-range dependence. Then we consider the problem of the drift parameter estimation for Ornstein–Uhlenbeck process driven by Gaussian Volterra process under consideration. We construct a strongly consistent estimator and investigate its asymptotic properties. Namely, we prove that it has the Cauchy asymptotic distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信