Isotropic random spin weighted functions on 𝑆² vs isotropic random fields on 𝑆³

IF 0.4 Q4 STATISTICS & PROBABILITY
Michele Stecconi
{"title":"Isotropic random spin weighted functions on 𝑆² vs isotropic random fields on 𝑆³","authors":"Michele Stecconi","doi":"10.1090/tpms/1177","DOIUrl":null,"url":null,"abstract":"<p>We show that an isotropic random field on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper U left-parenthesis 2 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>S</mml:mi>\n <mml:mi>U</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">SU(2)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is not necessarily isotropic as a random field on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S cubed\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>S</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">S^3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, although the two spaces can be identified. The ambiguity is due to the fact that the notion of isotropy on a group and on a sphere are different, the latter being much stronger. We show that any isotropic random field on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S cubed\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>S</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">S^3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is necessarily a superposition of uncorrelated random harmonic homogeneous polynomials, such that the one of degree <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\n <mml:semantics>\n <mml:mi>d</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is necessarily a superposition of uncorrelated random spin weighted functions of every possible spin weight in the range <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartSet minus StartFraction d Over 2 EndFraction comma ellipsis comma StartFraction d Over 2 EndFraction EndSet\">\n <mml:semantics>\n <mml:mrow>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-OPEN\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">{</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mfrac>\n <mml:mi>d</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:mfrac>\n <mml:mo>,</mml:mo>\n <mml:mo>…<!-- … --></mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mfrac>\n <mml:mi>d</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:mfrac>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-CLOSE\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">}</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\bigl \\{-\\frac {d}{2},\\dots ,\\frac {d}{2}\\bigr \\}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, each of which is isotropic in the sense of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper U left-parenthesis 2 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>S</mml:mi>\n <mml:mi>U</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>2</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">SU(2)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Moreover, for a random field of fixed degree, each spin weight appears with the same magnitude, in a sense to be specified.</p>\n\n<p>In addition we will give an overview of the theory of spin weighted functions and Wigner <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\">\n <mml:semantics>\n <mml:mi>D</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">D</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-matrices, with the purpose of gathering together many different points of view and adding ours. As a byproduct of this survey we will prove some new properties of the Wigner matrices and a formula relating the operators <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal ð ModifyingAbove normal ð With bar\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi mathvariant=\"normal\">ð<!-- ð --></mml:mi>\n <mml:mover>\n <mml:mi mathvariant=\"normal\">ð<!-- ð --></mml:mi>\n <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\eth \\overline {\\eth }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and the horizontal Laplacian of the Hopf fibration <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S cubed right-arrow upper S squared\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>S</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:msup>\n <mml:mi>S</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">S^3\\to S^2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, in the sense of [Bérard Bergery and Bourguignon, Illinois J. Math. 26 (1982), no. 2, 181–200.]</p>","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We show that an isotropic random field on S U ( 2 ) SU(2) is not necessarily isotropic as a random field on S 3 S^3 , although the two spaces can be identified. The ambiguity is due to the fact that the notion of isotropy on a group and on a sphere are different, the latter being much stronger. We show that any isotropic random field on S 3 S^3 is necessarily a superposition of uncorrelated random harmonic homogeneous polynomials, such that the one of degree d d is necessarily a superposition of uncorrelated random spin weighted functions of every possible spin weight in the range { d 2 , , d 2 } \bigl \{-\frac {d}{2},\dots ,\frac {d}{2}\bigr \} , each of which is isotropic in the sense of S U ( 2 ) SU(2) . Moreover, for a random field of fixed degree, each spin weight appears with the same magnitude, in a sense to be specified.

In addition we will give an overview of the theory of spin weighted functions and Wigner D D -matrices, with the purpose of gathering together many different points of view and adding ours. As a byproduct of this survey we will prove some new properties of the Wigner matrices and a formula relating the operators ð ð ¯ \eth \overline {\eth } and the horizontal Laplacian of the Hopf fibration S 3 S 2 S^3\to S^2 , in the sense of [Bérard Bergery and Bourguignon, Illinois J. Math. 26 (1982), no. 2, 181–200.]

我们证明了SU(2)SU(2。这种模糊性是由于群和球体上的各向同性概念不同,后者更强。我们证明了在S3 S^3上的任何各向同性随机场必然是不相关的随机调和齐次多项式的叠加,使得次数为d的一个必然是在{−d2,…,d2}\bigl\{-\frac{d}{2},\dots范围内的每个可能的自旋权重的不相关随机自旋加权函数的叠加,\frac{d}{2}\bigr},它们中的每一个在SU(2)SU(2)的意义上是各向同性的。此外,对于固定度的随机场,在某种意义上,每个自旋权重都以相同的大小出现。此外,我们还将概述自旋加权函数和Wigner D-矩阵的理论,目的是收集许多不同的观点并添加我们的观点。作为这项研究的副产品,我们将证明Wigner矩阵的一些新性质,以及一个关于算子的公式→ S 2 S^3\到S^2,在[Bérard Bergery和Bourguignon,Illinois J.Math.26(1982),no.2181-200]的意义上
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信