A. Malyarenko, Y. Mishura, A. Olenko, M. Ostoja-Starzewski
{"title":"Editorial","authors":"A. Malyarenko, Y. Mishura, A. Olenko, M. Ostoja-Starzewski","doi":"10.1090/tpms/1183","DOIUrl":"https://doi.org/10.1090/tpms/1183","url":null,"abstract":"","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48138371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Revisiting recurrence criteria of birth and death processes. Short proofs","authors":"O. Zakusylo","doi":"10.1090/tpms/1182","DOIUrl":"https://doi.org/10.1090/tpms/1182","url":null,"abstract":"The paper contains several new transparent proofs of criteria appearing in classification of birth and death processes (BDPs). They are almost purely probabilistic and differ from the classical techniques of three-term recurrence relations, continued fractions and orthogonal polynomials. Let \u0000\u0000 \u0000 \u0000 \u0000 T\u0000 ∞\u0000 \u0000 \u0000 {T^infty }\u0000 \u0000\u0000 be the passage time from zero to \u0000\u0000 \u0000 ∞\u0000 infty\u0000 \u0000\u0000. The regularity criterion says that \u0000\u0000 \u0000 \u0000 \u0000 \u0000 T\u0000 ∞\u0000 \u0000 \u0000 >\u0000 ∞\u0000 \u0000 {T^infty } > infty\u0000 \u0000\u0000 if and only if \u0000\u0000 \u0000 \u0000 \u0000 E\u0000 \u0000 \u0000 \u0000 T\u0000 ∞\u0000 \u0000 \u0000 >\u0000 ∞\u0000 \u0000 mathbb {E}{T^infty } > infty\u0000 \u0000\u0000. It is heavily based on a result of Gong, Y., Mao, Y.-H. and Zhang, C. [J. Theoret. Probab. 25 (2012), no. 4, 950–980]. We obtain the latter expectation by using a two-term recurrence relation. We observe that the recurrence criterion is an immediate consequence of the well-known recurrence criterion for discrete-time BDPs and a result of Chung K. L. [Markov Chains with Stationary Transition Probabilities, Springer-Verlag, New York (1967)]. We obtain the classical criterion of positive recurrence using technique of the common probability space. While doing so, we construct a monotone sequence of BDPs with finite state spaces converging to BDPs with an infinite state space.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44596144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Isotropic random spin weighted functions on 𝑆² vs isotropic random fields on 𝑆³","authors":"Michele Stecconi","doi":"10.1090/tpms/1177","DOIUrl":"https://doi.org/10.1090/tpms/1177","url":null,"abstract":"<p>We show that an isotropic random field on <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper U left-parenthesis 2 right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>S</mml:mi>\u0000 <mml:mi>U</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">SU(2)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is not necessarily isotropic as a random field on <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S cubed\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mi>S</mml:mi>\u0000 <mml:mn>3</mml:mn>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">S^3</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, although the two spaces can be identified. The ambiguity is due to the fact that the notion of isotropy on a group and on a sphere are different, the latter being much stronger. We show that any isotropic random field on <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S cubed\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mi>S</mml:mi>\u0000 <mml:mn>3</mml:mn>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">S^3</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is necessarily a superposition of uncorrelated random harmonic homogeneous polynomials, such that the one of degree <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\">\u0000 <mml:semantics>\u0000 <mml:mi>d</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">d</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is necessarily a superposition of uncorrelated random spin weighted functions of every possible spin weight in the range <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartSet minus StartFraction d Over 2 EndFraction comma ellipsis comma StartFraction d Over 2 EndFraction EndSet\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mstyle scriptlevel=\"0\">\u0000 <mml:mrow class=\"MJX-TeXAtom-OPEN\">\u0000 <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">{</mml:mo>\u0000 </mml:mrow>\u0000 </mml:mstyle>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mfrac>\u0000 <mml:mi>d</mml:mi>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mfrac>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mo>…<!-- … --></mml:mo>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mfrac>\u0000 <mml:mi>d</mml:mi>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mfrac>\u0000 <mml:mstyle scriptlevel=\"0\">\u0000 <mml:mrow class=\"MJX-TeXAtom-CLOSE\">\u0000 <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">}</mml:mo>\u0000 </mml:mrow>\u0000 </mml:mstyle>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">bigl {","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46401291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatiotemporal covariance functions for Laplacian ARMA fields in higher dimensions","authors":"G. Terdik","doi":"10.1090/tpms/1173","DOIUrl":"https://doi.org/10.1090/tpms/1173","url":null,"abstract":"This paper presents clear formulae of the covariance functions of Laplacian ARMA fields in terms of coefficients and Bessel functions in higher spatial dimensions. Spectral methods are used for the study of spatiotemporal Laplacian ARMA fields in Euclidean spaces and spheres therein with dimension \u0000\u0000 \u0000 \u0000 d\u0000 ≥\u0000 2\u0000 \u0000 dgeq 2\u0000 \u0000\u0000.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48298724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On spectral theory of random fields in the ball","authors":"N. Leonenko, A. Malyarenko, A. Olenko","doi":"10.1090/tpms/1175","DOIUrl":"https://doi.org/10.1090/tpms/1175","url":null,"abstract":"The paper investigates random fields in the ball. It studies three types of such fields: restrictions of scalar random fields in the ball to the sphere, spin, and vector random fields. The review of the existing results and new spectral theory for each of these classes of random fields are given. Examples of applications to classical and new models of these three types are presented. In particular, the Matérn model is used for illustrative examples. The derived spectral representations can be utilised to further study theoretical properties of such fields and to simulate their realisations. The obtained results can also find various applications for modelling and investigating ball data in cosmology, geosciences and embryology.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49597930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the other LIL for variables without finite variance","authors":"R. Pakshirajan, M. Sreehari","doi":"10.1090/tpms/1179","DOIUrl":"https://doi.org/10.1090/tpms/1179","url":null,"abstract":"<p>In this paper we give a simpler proof of Jain’s [Z. Wahrsch. Verw. Gebiete 59 (1982), no. 1, 117–138] result concerning the Other Law of the Iterated Logarithm for partial sums of a class of independent and identically distributed random variables with infinite variance but in the domain of attraction of a normal law. Jain’s result is less restrictive than ours but depends heavily on the techniques of Donsker and Varadhan in the theory of Large deviations. Our proof involves elementary properties of slowly varying functions. We assume that the distribution of random variables <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X Subscript n\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">X_n</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> satisfies the condition that <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"limit Underscript x right-arrow normal infinity Endscripts StartFraction log upper H left-parenthesis x right-parenthesis Over left-parenthesis log x right-parenthesis Superscript delta Baseline EndFraction equals 0\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:munder>\u0000 <mml:mo movablelimits=\"true\" form=\"prefix\">lim</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\u0000 <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\u0000 </mml:mrow>\u0000 </mml:munder>\u0000 <mml:mfrac>\u0000 <mml:mrow>\u0000 <mml:mi>log</mml:mi>\u0000 <mml:mo><!-- --></mml:mo>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>log</mml:mi>\u0000 <mml:mo><!-- --></mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:msup>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mi>δ<!-- δ --></mml:mi>\u0000 </mml:msup>\u0000 </mml:mrow>\u0000 </mml:mfrac>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">lim _{ xrightarrow infty } frac {log H(x)}{(log x)^delta } = 0</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> for some <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0 greater-than delta greater-than 1 slash 2\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mn>0</mml:mn>\u0000 <mml:mo>></mml:mo>\u0000 <mml:mi>δ<!-- δ --></mml:mi>\u0000 <mml:mo>></mml:mo>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo>/</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46810295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stationary solutions of a second-order differential equation with operator coefficients","authors":"M. Horodnii","doi":"10.1090/tpms/1171","DOIUrl":"https://doi.org/10.1090/tpms/1171","url":null,"abstract":"Necessary and sufficient conditions are given for the existence of a unique stationary solution to the second-order linear differential equation with bounded operator coefficients, perturbed by a stationary process. In the case when the corresponding “algebraic” operator equation has separated roots, the new representation of the stationary solution of the considered differential equation is obtained.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42362540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On local path behavior of Surgailis multifractional processes","authors":"A. Ayache, F. Bouly","doi":"10.1090/tpms/1162","DOIUrl":"https://doi.org/10.1090/tpms/1162","url":null,"abstract":"<p>Multifractional processes are stochastic processes with non-stationary increments whose local regularity and self-similarity properties change from point to point. The paradigmatic example of them is the <italic>classical</italic> Multifractional Brownian Motion (MBM) <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-brace script upper M left-parenthesis t right-parenthesis right-brace Subscript t element-of double-struck upper R\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">M</mml:mi>\u0000 </mml:mrow>\u0000 </mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:msub>\u0000 <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo>∈<!-- ∈ --></mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 </mml:mrow>\u0000 </mml:msub>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">{{mathcal {M}}(t)}_{tin mathbb {R}}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of Benassi, Jaffard, Lévy Véhel, Peltier and Roux, which was constructed in the mid 90’s just by replacing the constant Hurst parameter <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\u0000 </mml:mrow>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">{mathcal {H}}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of the well-known Fractional Brownian Motion by a deterministic function <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H left-parenthesis t right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\u0000 </mml:mrow>\u0000 </mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>t</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">{mathcal {H}}(t)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> having some smoothness. More than 10 years later, using a different construction method, which basically relied on nonhomogeneous fractional integration and differentiation operators, Surgailis introduced two <italic>non-classical</italic> Gaussian multi","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45008599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Finite dimensional models for random microstructures","authors":"M. Grigoriu","doi":"10.1090/tpms/1168","DOIUrl":"https://doi.org/10.1090/tpms/1168","url":null,"abstract":"<p>Finite dimensional (FD) models, i.e., deterministic functions of space depending on finite sets of random variables, are used extensively in applications to generate samples of random fields <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z left-parenthesis x right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>Z</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">Z(x)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and construct approximations of solutions <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U left-parenthesis x right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>U</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">U(x)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of ordinary or partial differential equations whose random coefficients depend on <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z left-parenthesis x right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>Z</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">Z(x)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. FD models of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z left-parenthesis x right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>Z</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">Z(x)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper U left-parenthesis x right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>U</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">U(x)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> constitute surrogates of these random fields which target various properties, e.g., mean/correlation functions or sample properties. We establish conditions under which samples of FD models can be used as substitutes for samples of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z left-parenthes","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47711515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-central limit theorem for the spatial average of the solution to the wave equation with Rosenblatt noise","authors":"R. Dhoyer, C. Tudor","doi":"10.1090/tpms/1167","DOIUrl":"https://doi.org/10.1090/tpms/1167","url":null,"abstract":"We analyze the limit behavior in distribution of the spatial average of the solution to the wave equation driven by the two-parameter Rosenblatt process in spatial dimension \u0000\u0000 \u0000 \u0000 d\u0000 =\u0000 1\u0000 \u0000 d=1\u0000 \u0000\u0000. We prove that this spatial average satisfies a non-central limit theorem, more precisely it converges in law to a Wiener integral with respect to the Rosenblatt process. We also give a functional version of this limit theorem.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46663930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}