Convergence in distribution for randomly stopped random fields

IF 0.4 Q4 STATISTICS & PROBABILITY
D. Silvestrov
{"title":"Convergence in distribution for randomly stopped random fields","authors":"D. Silvestrov","doi":"10.1090/tpms/1160","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper X\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">X</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {X}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Y\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Y</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Y}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be two complete, separable, metric spaces, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"xi Subscript epsilon Baseline left-parenthesis x right-parenthesis comma x element-of double-struck upper X\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>ξ<!-- ξ --></mml:mi>\n <mml:mi>ε<!-- ε --></mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>,</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">X</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\xi _\\varepsilon (x), x \\in \\mathbb {X}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu Subscript epsilon\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>ν<!-- ν --></mml:mi>\n <mml:mi>ε<!-- ε --></mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\nu _\\varepsilon</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be, for every <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon element-of left-bracket 0 comma 1 right-bracket\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ε<!-- ε --></mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">]</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\varepsilon \\in [0, 1]</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, respectively, a random field taking values in space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Y\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Y</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Y}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and a random variable taking values in space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper X\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">X</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {X}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We present general conditions for convergence in distribution for random variables <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"xi Subscript epsilon Baseline left-parenthesis nu Subscript epsilon Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>ξ<!-- ξ --></mml:mi>\n <mml:mi>ε<!-- ε --></mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>ν<!-- ν --></mml:mi>\n <mml:mi>ε<!-- ε --></mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\xi _\\varepsilon (\\nu _\\varepsilon )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> that is the conditions insuring holding of relation, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"xi Subscript epsilon Baseline left-parenthesis nu Subscript epsilon Baseline right-parenthesis long right-arrow Overscript sans-serif d Endscripts xi 0 left-parenthesis nu 0 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>ξ<!-- ξ --></mml:mi>\n <mml:mi>ε<!-- ε --></mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>ν<!-- ν --></mml:mi>\n <mml:mi>ε<!-- ε --></mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-REL\">\n <mml:mover>\n <mml:mrow class=\"MJX-TeXAtom-OP MJX-fixedlimits\">\n <mml:mo stretchy=\"false\">⟶<!-- ⟶ --></mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"sans-serif\">d</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:mover>\n </mml:mrow>\n <mml:msub>\n <mml:mi>ξ<!-- ξ --></mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>ν<!-- ν --></mml:mi>\n <mml:mn>0</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\xi _\\varepsilon (\\nu _\\varepsilon ) \\stackrel {\\mathsf {d}}{\\longrightarrow } \\xi _0(\\nu _0)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon right-arrow 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ε<!-- ε --></mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\varepsilon \\to 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Let X \mathbb {X} and Y \mathbb {Y} be two complete, separable, metric spaces, ξ ε ( x ) , x X \xi _\varepsilon (x), x \in \mathbb {X} and ν ε \nu _\varepsilon be, for every ε [ 0 , 1 ] \varepsilon \in [0, 1] , respectively, a random field taking values in space Y \mathbb {Y} and a random variable taking values in space X \mathbb {X} . We present general conditions for convergence in distribution for random variables ξ ε ( ν ε ) \xi _\varepsilon (\nu _\varepsilon ) that is the conditions insuring holding of relation, ξ ε ( ν ε ) d ξ 0 ( ν 0 ) \xi _\varepsilon (\nu _\varepsilon ) \stackrel {\mathsf {d}}{\longrightarrow } \xi _0(\nu _0) as ε 0 \varepsilon \to 0 .

随机停止随机场分布的收敛性
设X \mathbb X{和Y }\mathbb Y{是两个完备的,可分离的度量空间,ξ ε (X), X∈X }\xi _ \varepsilon (X), X \in\mathbb X{和ν ε }\nu _ \varepsilon be,对于每一个ε∈[0],1] \varepsilon\in[0,1]分别为在空间Y中取值的随机场\mathbb Y{和在空间X中取值的随机变量}\mathbb X{。给出了随机变量ξ ε (ν ε) }\xi _ \varepsilon (\nu _ \varepsilon)分布收敛的一般条件,即保证关系成立的条件。ξ ε (ν ε) δ ξ 0(ν 0) \xi _ \varepsilon (\nu _ \varepsilon) \stackrel{\mathsf d{}}{\longrightarrow}\xi _0(\nu _0)为ε→0\varepsilon\to
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信