含Rosenblatt噪声的波动方程解的空间平均的非中心极限定理

IF 0.4 Q4 STATISTICS & PROBABILITY
R. Dhoyer, C. Tudor
{"title":"含Rosenblatt噪声的波动方程解的空间平均的非中心极限定理","authors":"R. Dhoyer, C. Tudor","doi":"10.1090/tpms/1167","DOIUrl":null,"url":null,"abstract":"We analyze the limit behavior in distribution of the spatial average of the solution to the wave equation driven by the two-parameter Rosenblatt process in spatial dimension \n\n \n \n d\n =\n 1\n \n d=1\n \n\n. We prove that this spatial average satisfies a non-central limit theorem, more precisely it converges in law to a Wiener integral with respect to the Rosenblatt process. We also give a functional version of this limit theorem.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-central limit theorem for the spatial average of the solution to the wave equation with Rosenblatt noise\",\"authors\":\"R. Dhoyer, C. Tudor\",\"doi\":\"10.1090/tpms/1167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the limit behavior in distribution of the spatial average of the solution to the wave equation driven by the two-parameter Rosenblatt process in spatial dimension \\n\\n \\n \\n d\\n =\\n 1\\n \\n d=1\\n \\n\\n. We prove that this spatial average satisfies a non-central limit theorem, more precisely it converges in law to a Wiener integral with respect to the Rosenblatt process. We also give a functional version of this limit theorem.\",\"PeriodicalId\":42776,\"journal\":{\"name\":\"Theory of Probability and Mathematical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tpms/1167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了双参数Rosenblatt过程驱动的波动方程在空间维数d=1时的空间平均解的极限分布行为。我们证明了该空间平均满足一个非中心极限定理,更确切地说,它在定律上收敛于关于Rosenblatt过程的Wiener积分。我们也给出了这个极限定理的泛函形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-central limit theorem for the spatial average of the solution to the wave equation with Rosenblatt noise
We analyze the limit behavior in distribution of the spatial average of the solution to the wave equation driven by the two-parameter Rosenblatt process in spatial dimension d = 1 d=1 . We prove that this spatial average satisfies a non-central limit theorem, more precisely it converges in law to a Wiener integral with respect to the Rosenblatt process. We also give a functional version of this limit theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信