{"title":"高维拉普拉斯ARMA场的时空协方差函数","authors":"G. Terdik","doi":"10.1090/tpms/1173","DOIUrl":null,"url":null,"abstract":"This paper presents clear formulae of the covariance functions of Laplacian ARMA fields in terms of coefficients and Bessel functions in higher spatial dimensions. Spectral methods are used for the study of spatiotemporal Laplacian ARMA fields in Euclidean spaces and spheres therein with dimension \n\n \n \n d\n ≥\n 2\n \n d\\geq 2\n \n\n.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spatiotemporal covariance functions for Laplacian ARMA fields in higher dimensions\",\"authors\":\"G. Terdik\",\"doi\":\"10.1090/tpms/1173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents clear formulae of the covariance functions of Laplacian ARMA fields in terms of coefficients and Bessel functions in higher spatial dimensions. Spectral methods are used for the study of spatiotemporal Laplacian ARMA fields in Euclidean spaces and spheres therein with dimension \\n\\n \\n \\n d\\n ≥\\n 2\\n \\n d\\\\geq 2\\n \\n\\n.\",\"PeriodicalId\":42776,\"journal\":{\"name\":\"Theory of Probability and Mathematical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tpms/1173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Spatiotemporal covariance functions for Laplacian ARMA fields in higher dimensions
This paper presents clear formulae of the covariance functions of Laplacian ARMA fields in terms of coefficients and Bessel functions in higher spatial dimensions. Spectral methods are used for the study of spatiotemporal Laplacian ARMA fields in Euclidean spaces and spheres therein with dimension
d
≥
2
d\geq 2
.