Sensors and Actuators Reports最新文献

筛选
英文 中文
Trace ammonia detection realized by mixed Ti-Zr metal-organic-frameworks and its application in exhaled breath sensing at room temperature 混合钛-锌金属有机框架实现的痕量氨检测及其在室温呼气传感中的应用
IF 6.5
Sensors and Actuators Reports Pub Date : 2024-06-28 DOI: 10.1016/j.snr.2024.100216
Zhiming Chen , Zhiwen Shi , Peng Zhang , Li Gao , Bingxin Liu , Lijuan Qiao
{"title":"Trace ammonia detection realized by mixed Ti-Zr metal-organic-frameworks and its application in exhaled breath sensing at room temperature","authors":"Zhiming Chen ,&nbsp;Zhiwen Shi ,&nbsp;Peng Zhang ,&nbsp;Li Gao ,&nbsp;Bingxin Liu ,&nbsp;Lijuan Qiao","doi":"10.1016/j.snr.2024.100216","DOIUrl":"https://doi.org/10.1016/j.snr.2024.100216","url":null,"abstract":"<div><p>The presence of ammonia in exhaled human breath serves as a crucial biomarker for renal diseases. This paper presents a highly sensitive ammonia sensor operable at room temperature, utilizing a Ti/Zr dual metal MOF as its core component, synthesized through a straightforward solvothermal reaction approach. The Ti/Zr-MOF demonstrates excellent responsiveness to ammonia gas, with a detection limit of remarkable sensitivity, reaching as low as 2 ppm. Notably, the sensor exhibits practical insensitivity to similar concentrations of other major interfering breath volatiles, including acetone, ethanol, and saturated moisture. Electron Paramagnetic Resonance (EPR) analysis confirms the presence of oxygen vacancies (Ov) in Ti/Zr-MOF materials, with Ti/Zr-MOF exhibiting stronger Ov signals and the potential for enhanced NH3 adsorption and capture. In-situ FTIR spectrum analysis reveals ammonia-induced -OH (H<sub>2</sub>O) moiety formation, indicating a reaction between adsorbed <span><math><msubsup><mi>O</mi><mn>2</mn><mo>−</mo></msubsup></math></span> species and ammonia, resulting in decreased electrical resistance of Ti/Zr-MOF.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"8 ","pages":"Article 100216"},"PeriodicalIF":6.5,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000328/pdfft?md5=0289f840f9b6230738f438f83bd68afc&pid=1-s2.0-S2666053924000328-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141543652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prussian blue nanofilm-sensitized plasmonic electrochemical microscopy for spatially resolved detection of the localized delivery of hydrogen peroxide 普鲁士蓝纳米薄膜敏化质子电化学显微镜用于空间分辨检测过氧化氢的局部释放
IF 6.5
Sensors and Actuators Reports Pub Date : 2024-06-26 DOI: 10.1016/j.snr.2024.100218
Adaly Garcia, Christina Dhoj, Samuel Groysman, Kinsley Wang, Stellina Ao, Aimee Anguiano, Tony Tran, Dianlu Jiang, Yixian Wang
{"title":"Prussian blue nanofilm-sensitized plasmonic electrochemical microscopy for spatially resolved detection of the localized delivery of hydrogen peroxide","authors":"Adaly Garcia,&nbsp;Christina Dhoj,&nbsp;Samuel Groysman,&nbsp;Kinsley Wang,&nbsp;Stellina Ao,&nbsp;Aimee Anguiano,&nbsp;Tony Tran,&nbsp;Dianlu Jiang,&nbsp;Yixian Wang","doi":"10.1016/j.snr.2024.100218","DOIUrl":"https://doi.org/10.1016/j.snr.2024.100218","url":null,"abstract":"<div><p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) sensing has been widely investigated using various electrochemical methods, yet the challenge of finding an imaging technique capable of real-time, spatially resolved detection remains. Addressing this, we introduce a Prussian blue (PB) nanofilm-sensitized plasmonic electrochemical microscopy (PEM) technique that successfully visualizes the localized delivery of H<sub>2</sub>O<sub>2</sub>. The PB nanofilm was carefully characterized, and its sensing capability towards H<sub>2</sub>O<sub>2</sub> was demonstrated in amperometric mode. Employing a precise micromanipulator system, we controlled a micropipette to create a localized concentration gradient on the sensor surface and monitored the gradient through the PB nanofilm-sensitized PEM. The accuracy of the obtained concentration values was further validated by numerical simulations based on finite-element methods. Our technique ensures dependable localized detection, and we anticipate that advancements in film uniformity will further improve the resolution. The potential applications of this technique are broad and significant, including the opportunity to investigate single-cell exocytosis with neurotransmitters like dopamine, thus offering a promising avenue for future biomedical research.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"8 ","pages":"Article 100218"},"PeriodicalIF":6.5,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000341/pdfft?md5=e4f2e9be16552a6853b9f0f6d1fda91b&pid=1-s2.0-S2666053924000341-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141595101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smartphone enabled machine learning approach assisted copper (II) quantification and opto-electrochemical explosive recognition by Aldazine-functionalized chemobiosensor 智能手机支持的机器学习方法通过醛嗪功能化化学生物传感器辅助铜 (II) 定量和光电化学爆炸物识别
IF 6.5
Sensors and Actuators Reports Pub Date : 2024-06-25 DOI: 10.1016/j.snr.2024.100215
Mohit Kumar Chattopadhyay , Amita Mondal , Abhijit Hazra , Swarup Kumar Tarai , Bishwajit Singh Kapoor , Sudit S. Mukhopadhyay , Surya Sarkar , Priyabrata Banerjee
{"title":"Smartphone enabled machine learning approach assisted copper (II) quantification and opto-electrochemical explosive recognition by Aldazine-functionalized chemobiosensor","authors":"Mohit Kumar Chattopadhyay ,&nbsp;Amita Mondal ,&nbsp;Abhijit Hazra ,&nbsp;Swarup Kumar Tarai ,&nbsp;Bishwajit Singh Kapoor ,&nbsp;Sudit S. Mukhopadhyay ,&nbsp;Surya Sarkar ,&nbsp;Priyabrata Banerjee","doi":"10.1016/j.snr.2024.100215","DOIUrl":"https://doi.org/10.1016/j.snr.2024.100215","url":null,"abstract":"<div><p>An Aldazine-based optoelectrochemical sensor, <strong>BMH</strong> (1-(quinolin-4-ylmethylene)hydrazono)methyl)naphthalen-2-ol) has been introduced herein for selective detection of aqueous copper (Cu<sup>2+</sup>) and 2, 4, 6-Trinitrophenol (TNP) at an ultra-low level detection limit (0.09 ppm for Cu<sup>2+</sup> and 0.019 ppm for TNP). Multichannel recognition aptitude of the chemosensor (<strong>BMH</strong>) towards both Cu<sup>2+</sup> and TNP along with bountiful practical applications ascertained it as an innovative one in the environmental and biomedical domains. <strong>BMH</strong> can detect Cu<sup>2+</sup> in water, fetal bovine serum, and human urine samples, while explosive TNP can be identified in water, soil, and matches powder. The intracellular Cu<sup>2+</sup> and TNP recognition efficiencies of <strong>BMH</strong> have been investigated in human lung cancer cell lines (A459). The hassle-free smartphone ensemble machine learning approach for Cu<sup>2+</sup>quantification has been introduced which would certainly be a significant addition in the domain of water quality analysis. Moreover, the ethylenediaminetetraacetic acid (EDTA) mediated reversibility of the probe could serve as a logic gate imitating electrical circuitry.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"8 ","pages":"Article 100215"},"PeriodicalIF":6.5,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000316/pdfft?md5=62cf8594c970cd8e7b0642370a1aabef&pid=1-s2.0-S2666053924000316-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141543653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel molecularly imprinted polymer sensor for sweat cortisol with embedded probe based on the co-deposition of Prussian Blue and Polypyrrole 基于普鲁士蓝和聚吡咯共沉积技术的带嵌入探针的新型汗皮质醇分子印迹聚合物传感器
IF 6.5
Sensors and Actuators Reports Pub Date : 2024-06-24 DOI: 10.1016/j.snr.2024.100217
Zixuan Song , Minghui Yin , Bo Rui , Tiezhu Liu , Wei Song , Li Sun , Shengmin Li , Jun Wang , Mengdi Han , Guangyang Gou , Ning Xue , Chunxiu Liu
{"title":"A novel molecularly imprinted polymer sensor for sweat cortisol with embedded probe based on the co-deposition of Prussian Blue and Polypyrrole","authors":"Zixuan Song ,&nbsp;Minghui Yin ,&nbsp;Bo Rui ,&nbsp;Tiezhu Liu ,&nbsp;Wei Song ,&nbsp;Li Sun ,&nbsp;Shengmin Li ,&nbsp;Jun Wang ,&nbsp;Mengdi Han ,&nbsp;Guangyang Gou ,&nbsp;Ning Xue ,&nbsp;Chunxiu Liu","doi":"10.1016/j.snr.2024.100217","DOIUrl":"https://doi.org/10.1016/j.snr.2024.100217","url":null,"abstract":"<div><p>The cortisol in human body is a crucial biomarker in terms of wellness management, mental state monitoring and stress-related disorder diagnosis. Therefore, the rapid, reliable and facile measurement of cortisol concentration has attracted extensive research interest. However, traditional cortisol detection such as immunosensing requires demanding laboratory layout, lengthy procedures and high costs, which means, consequently, it is incompatible with the current goal of cortisol sensing. Given the contradiction, an electrochemical sensor based on molecularly imprinted polymer (MIP) for simple, efficient, non-invasive cortisol detection was proposed. The two-step approach employed is simple enough and allows for the mass production of devices. And the embedding of Prussian Blue (PB) within the MIP layer eliminates the need for complex external probes, thereby making the resultant sensors more suitable for integration into wearable devices. We firstly demonstrated the feasibility of the proposed strategy and characterized the successful formation of cavities specific to cortisol molecules. Thereafter, we measured the dependence of the current response on cortisol concentration in Phosphate Buffered Saline (PBS) buffer, which revealed a near-linear relationship between the logarithm of the cortisol concentration and the redox current from 10<sup>−9</sup> mol/L to 10<sup>−5</sup> mol/L, covering the optimal range of cortisol concentration in sweat. Subsequently, sensors with the same specifications were prepared and tested in PBS buffer, exhibiting good consistency. In artificial sweat, we further demonstrated that they have benign selectivity, interference immunity and great potential in practical applications.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"8 ","pages":"Article 100217"},"PeriodicalIF":6.5,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266605392400033X/pdfft?md5=bafba738e360ac53a37ed0a8095eba57&pid=1-s2.0-S266605392400033X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141483083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 16-channel Si probe monolithically integrated with CMOS chips for neural recording 用于神经记录的与 CMOS 芯片单片集成的 16 通道硅探针
IF 6.5
Sensors and Actuators Reports Pub Date : 2024-06-21 DOI: 10.1016/j.snr.2024.100206
Guang-Yang Gou , Changhua You , Pan Yao , Yu-Sen Guo , Tie-Zhu Liu , Zi-Xuan Song , Ben-Yuan He , MingHui Yin , Xuan Zhang , Chunxiu Liu , Jun Zhou , Xuan Sun , Chengyu Zhuang , Yuan-Dong Gu , Lei Yao , Ning Xue , Ming Zhao
{"title":"A 16-channel Si probe monolithically integrated with CMOS chips for neural recording","authors":"Guang-Yang Gou ,&nbsp;Changhua You ,&nbsp;Pan Yao ,&nbsp;Yu-Sen Guo ,&nbsp;Tie-Zhu Liu ,&nbsp;Zi-Xuan Song ,&nbsp;Ben-Yuan He ,&nbsp;MingHui Yin ,&nbsp;Xuan Zhang ,&nbsp;Chunxiu Liu ,&nbsp;Jun Zhou ,&nbsp;Xuan Sun ,&nbsp;Chengyu Zhuang ,&nbsp;Yuan-Dong Gu ,&nbsp;Lei Yao ,&nbsp;Ning Xue ,&nbsp;Ming Zhao","doi":"10.1016/j.snr.2024.100206","DOIUrl":"https://doi.org/10.1016/j.snr.2024.100206","url":null,"abstract":"<div><p>Multi-channel neural electrodes as a crucial means are of great significance for information exchange between the brain and computers. Herein, we present a 16-channel Si-based active neural probe system that achieves a monolithic integration between the electrodes and circuits in a single probe, making it a standalone integrated electrophysiology recording system. The ASIC prepared on a base (<span><math><mrow><mn>2</mn><mspace></mspace><mo>×</mo><mspace></mspace><mn>2</mn><mspace></mspace><mi>m</mi><msup><mrow><mi>m</mi></mrow><mn>2</mn></msup></mrow></math></span>) is a 16-channel analog frontend (AFE) for neural recording, and each channel has a low-noise amplifier (LNA), a bandpass filter (BPF), a buffer and a current bias circuit. The 258 neural signal recording electrodes (<span><math><mrow><mn>22</mn><mspace></mspace><mo>×</mo><mspace></mspace><mn>24</mn><mspace></mspace><mi>μ</mi><msup><mrow><mi>m</mi></mrow><mn>2</mn></msup></mrow></math></span>) are densely packed on a 50 μm thick, 100 μm wide, and 3 mm long shank. The ASIC of neural probe, internal interconnecting wires are all implemented in commercial SMIC 0.18 μm CMOS technology. The neural probe system achieves a 3.6 μV<sub>rms</sub> input-referred noise (IRN) in a bandwidth of 1.1Hz-10 kHz, 70.8 μW power consumption, 0.0785 mm<sup>2</sup> area per channel, as well as an AFE gain of 58.1 dB Furthermore, the impedances of the Au electrodes can be obtained as 0.5–2.1 MΩ at a frequency of 1 kHz. The functionality of a 16-channel silicon-based neural probe is validated in an in-vivo experiment on lab rats.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"8 ","pages":"Article 100206"},"PeriodicalIF":6.5,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000225/pdfft?md5=c1e13733680810a35fc396ccb92755a3&pid=1-s2.0-S2666053924000225-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141486208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical review of potential technologies for a wearable benzene sensor system 对可穿戴式苯传感器系统潜在技术的严格审查
IF 6.5
Sensors and Actuators Reports Pub Date : 2024-06-20 DOI: 10.1016/j.snr.2024.100210
Tim Dunker, Alain Marc Ferber, Håkon Sagberg, Kari Anne Hestnes Bakke
{"title":"Critical review of potential technologies for a wearable benzene sensor system","authors":"Tim Dunker,&nbsp;Alain Marc Ferber,&nbsp;Håkon Sagberg,&nbsp;Kari Anne Hestnes Bakke","doi":"10.1016/j.snr.2024.100210","DOIUrl":"10.1016/j.snr.2024.100210","url":null,"abstract":"<div><p>We evaluate different methods to detect benzene at a parts-per-billion level regarding their potential to be used in a wearable sensor. Benzene is a carcinogenic molecule, regarded as a major health threat by the World Health Organization. A wearable sensor is necessary to detect leaks immediately, but it is challenging to achieve such low limits of detection and quantification, even with laboratory equipment. A wearable sensor must, in addition to good selectivity and sensitivity, meet stricter requirements of size, weight, temperature, repeatability, and power consumption. We conclude that the most promising techniques for a wearable sensor are either infrared photoacoustic spectroscopy near 14.8 μm, or a photoionization detector combined with one of three selective devices: micro-gas chromatography, cavitands, or catalytic filters (<span><math><msub><mtext>WO</mtext><mn>3</mn></msub></math></span>, for example). Ultraviolet photoacoustic spectroscopy may also be a suitable future technique for a wearable benzene sensor when efficient LEDs and lasers become available at many UV-C wavelengths.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"8 ","pages":"Article 100210"},"PeriodicalIF":6.5,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000262/pdfft?md5=383f024ef002140d9fed222c5d50c652&pid=1-s2.0-S2666053924000262-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-situ spectroelectrochemical analysis: Irreversible deformation of cesium lead bromide Perovskite Quantum Dots in SiOx matrices 原位光谱电化学分析:氧化硅基质中的溴化铯铅 Perovskite 量子点的不可逆变形
IF 6.5
Sensors and Actuators Reports Pub Date : 2024-06-20 DOI: 10.1016/j.snr.2024.100208
Hyeri Jeon , Hyeonyeong Jo , Sumi Seo , Soo Jeong Lee , Seog Joon Yoon , Donghoon Han
{"title":"In-situ spectroelectrochemical analysis: Irreversible deformation of cesium lead bromide Perovskite Quantum Dots in SiOx matrices","authors":"Hyeri Jeon ,&nbsp;Hyeonyeong Jo ,&nbsp;Sumi Seo ,&nbsp;Soo Jeong Lee ,&nbsp;Seog Joon Yoon ,&nbsp;Donghoon Han","doi":"10.1016/j.snr.2024.100208","DOIUrl":"https://doi.org/10.1016/j.snr.2024.100208","url":null,"abstract":"<div><p>To practically utilized the organometallic lead halide perovskites to optoelectronic devices and photoelectrochemical cells, numerous efforts have been utilized to obtain the perovskites with low-energy process with coverage of various inorganic mediums to improve stability against humidity. By utilizing ligand-assisted reprecipitation process, under ambient condition at room temperature, the dimensionally confined perovskite quantum dots in silica matrices (PQD@SiO<sub>x</sub>) were obtained, and they were stable under several months under the ambient condition. To apply the PQD@SiO<sub>x</sub> to the photoelectrochemical cells by introducing direct contact between PQD@SiO<sub>x</sub> and electrolyte, the material/photophysical properties under electrochemical conditions are necessary to be studied. However, the role of silica coverage to the electrochemical behaviors of the PQD cores in the silica medium were not yet studied. In this work, under the electrochemical conditions, the oxidative and reductive behaviors of the PQD@SiO<sub>x</sub> were studied. Also, through <em>in-situ</em> spectroelectrochemical study, the electrochemically induced irreversible deformation process were tracked. The findings of this study could be used to understand role of silica coverage and develop the strategy to improve the protecting behavior of the silica for the PQD cores to utilize into the photoelectrochemical cells.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"8 ","pages":"Article 100208"},"PeriodicalIF":6.5,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000249/pdfft?md5=f3232432c75a6c1d6c97987820de091d&pid=1-s2.0-S2666053924000249-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141483081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid and portable quantification of HIV RNA via a smartphone-enabled digital CRISPR device and deep learning 通过支持智能手机的数字 CRISPR 设备和深度学习,快速、便携地量化艾滋病毒 RNA
IF 6.5
Sensors and Actuators Reports Pub Date : 2024-06-19 DOI: 10.1016/j.snr.2024.100212
Hoan T. Ngo , Patarajarin Akarapipad , Pei-Wei Lee , Joon Soo Park , Fan-En Chen , Alexander Y. Trick , Tza-Huei Wang , Kuangwen Hsieh
{"title":"Rapid and portable quantification of HIV RNA via a smartphone-enabled digital CRISPR device and deep learning","authors":"Hoan T. Ngo ,&nbsp;Patarajarin Akarapipad ,&nbsp;Pei-Wei Lee ,&nbsp;Joon Soo Park ,&nbsp;Fan-En Chen ,&nbsp;Alexander Y. Trick ,&nbsp;Tza-Huei Wang ,&nbsp;Kuangwen Hsieh","doi":"10.1016/j.snr.2024.100212","DOIUrl":"https://doi.org/10.1016/j.snr.2024.100212","url":null,"abstract":"<div><p>For the 29.8 million people in the world living with HIV/AIDS and receiving antiretroviral therapy, it is crucial to monitor their HIV viral loads. To this end, rapid and portable diagnostic tools that can quantify HIV RNA are critically needed. We report herein a rapid and quantitative digital CRISPR-assisted HIV RNA detection assay that has been implemented within a portable smartphone-based device as a potential solution. Specifically, we first developed a fluorescence-based reverse transcription recombinase polymerase amplification (RT-RPA)-CRISPR assay that can efficiently detect HIV RNA at 42 °C. We then implemented this assay within a commercial stamp-sized digital chip, where RNA molecules were quantified as strongly fluorescent digital reaction wells. The isothermal reaction condition and the strong fluorescence in the digital chip simplified the design of thermal and optical modules, allowing us to engineer a palm-size device measuring 70 × 115 × 80 mm and weighing less than 0.6 kg. We also capitalized the smartphone by developing a custom app to control the device, perform the digital assay, and capture fluorescence images throughout the assay using the smartphone's camera. Moreover, we trained and verified a deep learning-based algorithm for analyzing fluorescence images and identifying positive digital reaction wells with high accuracy. Using our smartphone-enabled digital CRISPR device, we successfully detected as low as 75 copies of HIV RNA in just 15 min, showing its potential toward monitoring of HIV viral loads and aiding the global effort to combat the HIV/AIDS epidemic.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"8 ","pages":"Article 100212"},"PeriodicalIF":6.5,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000286/pdfft?md5=d6be4571c77e1353b94cc1b899a5b0f1&pid=1-s2.0-S2666053924000286-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141483084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly sensitive and selective optical detection of Staphylococcus aureus using thiol functionalized monolayer tungsten disulfide grown by chemical vapor deposition 利用化学气相沉积法生长的硫醇功能化单层二硫化钨对金黄色葡萄球菌进行高灵敏度和选择性光学检测
IF 6.5
Sensors and Actuators Reports Pub Date : 2024-06-18 DOI: 10.1016/j.snr.2024.100214
Abdul Kaium Mia , Swapnil Sinha , P.K. Giri
{"title":"Highly sensitive and selective optical detection of Staphylococcus aureus using thiol functionalized monolayer tungsten disulfide grown by chemical vapor deposition","authors":"Abdul Kaium Mia ,&nbsp;Swapnil Sinha ,&nbsp;P.K. Giri","doi":"10.1016/j.snr.2024.100214","DOIUrl":"https://doi.org/10.1016/j.snr.2024.100214","url":null,"abstract":"<div><p>Monolayer tungsten disulfide (1L-WS<sub>2</sub>) exhibits excellent optical properties due to its direct bandgap. The extraordinary photoluminescence (PL) emission at room temperature from CVD-grown 1L-WS<sub>2</sub> was utilized for the first time here as a recognition tool for detecting <em>S. aureus</em> bacteria with high sensitivity and selectivity. The 1L-WS<sub>2</sub> possesses sulfur vacancy, which has been utilized for single-standard DNA (ssDNA) aptamer immobilization via the thiol functional group. The small-sized, highly selective ssDNA aptamers identify and selectively interact with targeted <em>S. aureus</em>, enabling selective detection. Interestingly, the PL emission of 1L-WS<sub>2</sub> is strongly influenced by external charge doping. The shape of the PL emission peak of 1L-WS<sub>2</sub> undergoes significant changes in the presence of targeted <em>S. aureus</em> as a result of charge transfer originating from selective interactions between ssDNA aptamer and <em>S. aureus,</em> while it remains unaffected for non-targeted <em>Escherichia coli</em>. The ratio of the integrated intensities of trion to neutral exciton peak was used as a calibration parameter for the quantification of <em>S. aureus</em> concentrations. The PL analysis of 1L-WS<sub>2</sub> with increasing concentration of <em>S. aureus</em> exhibits a linear response over 10<sup>2</sup> CFU/mL to 10<sup>7</sup> CFU/ml with a lower detection limit of 2.0 CFU/mL. The proposed sensing system can identify an unknown concentration of <em>S. aureus</em> in human urine with 78% accuracy at a concentration of 10<sup>5</sup> CFU/mL. These results demonstrate the potential future generation applications of monolayer transition metal dichalcogenides in the optical biosensing of pathogenic species using suitable receptors.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"8 ","pages":"Article 100214"},"PeriodicalIF":6.5,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000304/pdfft?md5=848f6df7623689629b7489d7ee5b0e06&pid=1-s2.0-S2666053924000304-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141438862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inflammatory biomarker detection in saliva samples by printed graphene immunosensors 利用印刷石墨烯免疫传感器检测唾液样本中的炎症生物标记物
IF 6.5
Sensors and Actuators Reports Pub Date : 2024-06-15 DOI: 10.1016/j.snr.2024.100211
D. Vurro , L. Pasquardini , M. Borriello , R. Foresti , M. Barra , M. Sidoli , D. Pontiroli , L. Fornasini , L. Aversa , R. Verucchi , P. D'Angelo , G. Tarabella
{"title":"Inflammatory biomarker detection in saliva samples by printed graphene immunosensors","authors":"D. Vurro ,&nbsp;L. Pasquardini ,&nbsp;M. Borriello ,&nbsp;R. Foresti ,&nbsp;M. Barra ,&nbsp;M. Sidoli ,&nbsp;D. Pontiroli ,&nbsp;L. Fornasini ,&nbsp;L. Aversa ,&nbsp;R. Verucchi ,&nbsp;P. D'Angelo ,&nbsp;G. Tarabella","doi":"10.1016/j.snr.2024.100211","DOIUrl":"10.1016/j.snr.2024.100211","url":null,"abstract":"<div><p>Herein, we present the design and fabrication of a portable biochemical sensor based on the Screen Printed Electrode (SPE) concept and applied for detecting interleukin-6 (IL-6), a key player in the complex process of inflammation, in real human saliva. The sensing mechanism relies on the antigen-antibody binding between the IL-6 molecule and its antibody immobilized over a surface of a Thermally Exfoliated Graphene Oxide (TEGO) layer. TEGO, deposited by Aerosol Jet Printing (AJP), provides advantages in terms of a time/cost consuming<del>fast</del>, easy and efficient biofunctionalization. The biosensor shows a dynamic range comprising IL-6 concentrations falling within the normal IL-6 levels in saliva. An extensive analysis of device performance, focused on the assessment of the sensor Limit of Detection (LoD) by two modes (i.e. from the lin-log calibration curve and from blank measurements), provides a best value of about 1 × 10<sup>−2</sup> pg/ml of IL-6 in saliva. Our work aims at providing a contribution toward applications in real environment, going beyond a proof of concept or prototyping at lab scale. Hence, the characterization of the sensor was finalized to find a reliable device-to-device reproducibility and calibration through the introduction of a measurement protocol based on comparative measurements between saliva samples without (blank) and with IL-6 spiked in it, in place of the <em>standard addition method</em> used in daily laboratory practice. Device-to-device reproducibility has been accordingly tested by acquiring multiple experimental points along the calibration curve using different individual devices for each point.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"8 ","pages":"Article 100211"},"PeriodicalIF":6.5,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000274/pdfft?md5=11adee908fe24b8c5ea7c622778ff555&pid=1-s2.0-S2666053924000274-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141413916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信