Martin Dawson , D.B. Geohegan (Guest Editor) , T.M. Spinka (Guest Editor) , C. Jagadish (Guest Editor)
{"title":"Special issue in honor of the 70th birthday of Professor J. Gary Eden","authors":"Martin Dawson , D.B. Geohegan (Guest Editor) , T.M. Spinka (Guest Editor) , C. Jagadish (Guest Editor)","doi":"10.1016/j.pquantelec.2021.100366","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2021.100366","url":null,"abstract":"","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"81 ","pages":"Article 100366"},"PeriodicalIF":11.7,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2818901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biological tunable photonics: Emerging optoelectronic applications manipulated by living biomaterials","authors":"Yifan Zhang , Ziyihui Wang , Yu-Cheng Chen","doi":"10.1016/j.pquantelec.2021.100361","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2021.100361","url":null,"abstract":"<div><p>Over the past few decades, optoelectronic devices have played a key role in human life and modern technology. To meet the development trends of the industry, photonics with tunable functions have emerged as building blocks with immense potential in controlling light–matter interactions, sensors, and integrated photonics. Compared with artificially designed materials and physical approaches, stimuli-responsive biointerfaces enable a higher level of functionalities and versatile means to tailor optical responses at the nanoscale. Recent advances in biological tunable photonics have attracted tremendous attention owing to the incorporation of living biomaterials into organic photonic and photoelectric devices. In this review, we highlight the advances made in biological tunable photonics during the past five years. We begin with an overview of the competency of natural biological materials, followed by the introduction of key stimuli that have a dominant influence on the development of active biointerfaces. Lastly, we present a comprehensive summary of optoelectronic applications that utilize living biomaterials as active controls. Such applications include bioactivated light-emitting diodes, biological lasers, active plasmonics, robotics, biological logic gates, light-harvesting antennas, molecular photonic wires, bioenergy, and biophotovoltaics. The opportunities and challenges for future research directions are also briefly discussed.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"80 ","pages":"Article 100361"},"PeriodicalIF":11.7,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1784749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-temperature terahertz quantum cascade lasers","authors":"Boyu Wen, Dayan Ban","doi":"10.1016/j.pquantelec.2021.100363","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2021.100363","url":null,"abstract":"<div><p>The terahertz (THz) quantum cascade laser (QCL), first demonstrated in 2002, is among the most promising radiation sources in the THz region owing to its high output power and broad frequency coverage from ∼1.3 to ∼5.4 THz and sub-terahertz, without and with assistance of external strong magnetic field. The operation of THz QCLs, however, has thus far been limited to applications below room temperature. Recent advances in THz QCL research have principally focused on optimization of quantum design, fabrication, and growth techniques to improve the maximum operating temperature of THz QCLs; these efforts culminated in a recent demonstration of pulse-mode lasing at temperature up to 250 K. Research interests continue to be propelled as new maximum lasing temperature record are set, heating up the race to realize room-temperature operation of THz QCLs. This paper critically reviews key achievements and milestones of quantum designs, fabrication techniques, and simulation methods applicable to the high temperature operation of THz QCLs. In addition, this paper provides a succinct summary of efforts in this field to pinpoint the remaining challenges and provide a comprehensive picture for future trends in THz QCL research.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"80 ","pages":"Article 100363"},"PeriodicalIF":11.7,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3078177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiangang Luo , Xiong Li , Mingbo Pu , Yinghui Guo , Fei Zhang , Xiaoliang Ma
{"title":"Symmetric and asymmetric photonic spin-orbit interaction in metasurfaces","authors":"Xiangang Luo , Xiong Li , Mingbo Pu , Yinghui Guo , Fei Zhang , Xiaoliang Ma","doi":"10.1016/j.pquantelec.2021.100344","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2021.100344","url":null,"abstract":"<div><p>Photonic spin and orbital angular momenta, which are determined by the polarization and spatial degrees of freedom of photons, are strongly coupled with each other in subwavelength structured metasurfaces. The photonic spin-orbit interaction (PSOI) results in the splitting of the degenerated system states. In this review, we focus on the principles of symmetric PSOI associated with the conjugated geometric phase modulation as well as the asymmetric PSOI resulting from the additional localized phase manipulation. Recent advances and important applications of symmetric and asymmetric PSOI in metasurfaces are also discussed. We finally highlight with our perspective on the remaining challenges and future trends in this field.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"79 ","pages":"Article 100344"},"PeriodicalIF":11.7,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2021.100344","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1784751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anderson S.L. Gomes , André L. Moura , Cid B. de Araújo , Ernesto P. Raposo
{"title":"Recent advances and applications of random lasers and random fiber lasers","authors":"Anderson S.L. Gomes , André L. Moura , Cid B. de Araújo , Ernesto P. Raposo","doi":"10.1016/j.pquantelec.2021.100343","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2021.100343","url":null,"abstract":"<div><p><span>Random Lasers (RLs) and Random Fiber Lasers (RFLs) have been the subject of intense research since their first experimental demonstration in 1994 and 2007, respectively. These low coherence light sources rely on multiple scattering of light to provide optical feedback in a medium combining a properly excited gain material and a scattering disordered structure. It is the feedback mechanism which makes RLs/RFLs quite different from conventional lasers, with the later relying on an optical cavity usually formed by two static<span> mirrors. This characteristic makes the RLs and RFLs devices to become cavityless, although not modeless, and present features of complex systems, whose statistics of intensity fluctuations are quite relevant. In addition, RLs can be designed in three-dimensional (3D) geometry, typically powders or colloids, in two-dimensional (2D) geometries, such as planar waveguides<span><span> or thin-films, and one-dimensional (1D or quasi-1D) geometry, generally in optical fibers<span>, known as the RFLs. The advantage of 1D geometry is the inherent directionality of the RFL emission, which otherwise is multidirectional in 3D geometry. In this review paper, we initially describe the basic theoretical framework supporting laser emission due to feedback in disordered structures. We then provide an updated vision of the types of RLs and RFLs that have been demonstrated and reported, from dyes solutions embedded with nano/submicron-scatterers composites to rare-earth doped micro or nanocrystals and random </span></span>fiber Bragg gratings<span><span> as the scattering structure. The influence of optical processes due to second-, third- and high-order nonlinearities on the intensity behavior of RLs are discussed. Subsequently, we review multidisciplinary studies that lead to the classification of RLs as complex systems exhibiting turbulence-like characteristics, photonic phase-transitions presenting replica </span>symmetry breaking and intensity fluctuations satisfying Lévy-like statistics, and the so-called Floquet phase. Furthermore, we also highlight technological applications that include</span></span></span></span><del>s</del><span> sensing, optical amplification, and biomedical imaging. The review concludes pointing out potential directions in basic and applied research in the field of RL and RFL.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"78 ","pages":"Article 100343"},"PeriodicalIF":11.7,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2021.100343","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2363134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mid-infrared supercontinuum generation in soft-glass specialty optical fibers: A review","authors":"Than Singh Saini, Ravindra Kumar Sinha","doi":"10.1016/j.pquantelec.2021.100342","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2021.100342","url":null,"abstract":"<div><p><span>Mid-infrared region (2–20 μm) is an important region of electromagnetic spectrum. Most of the molecules including CH</span><sub>4</sub>, CO, NO, NO<sub>2</sub>, C<sub>6</sub>H<sub>6</sub>, TNT, NH<sub>3</sub>, SF<sub>6</sub>, HNO<sub>3</sub><span>, greenhouse gas radiation etc. have their fundamental vibrations in this domain. Thus, the </span><strong>mid-infrared</strong><span> region is known as ‘molecular fingerprint region’ and desirable to get the signature of these molecules. Tellurite and chalcogenide glasses have the advantages of a wide transparency window </span><strong>(up to ~20 μm)</strong><span><span><span> and very high optical nonlinearities, making them decent candidates for the mid-infrared supercontinuum generation. </span>Photonic crystal fibers provide the wavelength-scale periodic arrangement of microstructure along their length. The core of the </span>photonic crystal<span> fibers and two-dimensional photonic crystal based on diverse geometries and the materials, permitting supercontinuum generation due to various nonlinear effects<span> in an enormously broad spectral range. In this review paper, we report the recent developments in the field of mid-infrared supercontinuum generation in both the tellurite and chalcogenide glass state-of-the-art optical fibers<span>. Particular attention is paid to the mid-infrared supercontinuum generation in the step-index, suspended-core, tapered, and photonic crystal fibers or microstructured optical fibers in tellurite and chalcogenide glasses. The coherence property of mid-infrared supercontinuum generation in all-normal dispersion engineered specialty optical fibers is also reviewed.</span></span></span></span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"78 ","pages":"Article 100342"},"PeriodicalIF":11.7,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2021.100342","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3078178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optical near-field measurement for spin-orbit interaction of light","authors":"Peng Shi, Aiping Yang, Fanfei Meng, Jiashuo Chen, Yuquan Zhang, Zhenwei Xie, Luping Du, Xiaocong Yuan","doi":"10.1016/j.pquantelec.2021.100341","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2021.100341","url":null,"abstract":"<div><p><span><span>Since the seminal work by J. H. Poynting, light has been known to carry momentum and angular momentum. The typical dynamical features of light and its interactions—termed spin–orbit interactions (SOIs), which have been investigated intensely over the last 30 years—play a crucial role in various light-matter interactions, for example: spin </span>Hall effect<span><span><span>, spin–orbit conversion, helicity-controlled unidirectional excitation of light, and their inverse effects, which leads to plenty of applications including optical manipulation, communications, imaging, sensing, nanometrology<span>, on-chip optoelectronic technologies and interdisciplinary researches. In particular, the SOI of light in isotropic </span></span>inhomogeneous media is a fine, subwavelength effect accomplished through the intrinsic coupling between light's phase, polarization and position. Therefore, the traditional methods of near-field measurements, such as </span>near field<span> scanning optical microscopy (NSOM), have been widely employed to reveal the optical SOIs intuitively by measuring the intensity of light. Very recently, with modern advanced nanofabrication techniques, many measurement techniques based on </span></span></span>nanoparticles<span>, nanoantennas, and nanoprobes of special designs have been proposed to understand the optical SOIs visually by characterizing the polarization and spin/orbital features of light. This endeavor has led to the development of chiral quantum optics<span>, spin optics<span>, and topological photonics, and resulted in novel applications requiring optical manipulations and angular momentum communications, chiral imaging, nanometrology, and robust spin-based devices and techniques for quantum technologies. Here, we review the near-field techniques for measurements of optical SOIs together with their potential applications. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields and typical phenomena involving optical SOIs. Then, we overview the theoretical basis and latest achievements of the near-field measurement techniques, including NSOM, optical manipulations, nanoantenna, and nanoprobes of special designs, all relevant to optical SOIs. A comprehensive classification is then constructed of all known methods of optical near-field measurements for the SOI of light and novel techniques identified for future applications.</span></span></span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"78 ","pages":"Article 100341"},"PeriodicalIF":11.7,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2021.100341","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2139614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Two dimensional photonic crystal slab biosensors using label free refractometric sensing schemes: A review","authors":"Qing Shi , Jianlong Zhao , Lijuan Liang","doi":"10.1016/j.pquantelec.2020.100298","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2020.100298","url":null,"abstract":"<div><p>Biosensor<span><span><span> technology is a quite attractive and rapidly developing research field in recent years, and the sub field of optical photonic crystal (PC) biosensor based on </span>label free sensing technology has also made great progress in this period. This review mainly concentrates on advances in the label free refractometric sensing based two dimensional (2D) PC slab biosensors particularly in the last decade, emphasizing the development and evolution of structural design. It begins with a brief discussion on the basic principles and design methods of label free 2D PC biosensors. Then, the sensors are classified according to the designed geometric structure and research progress of various sensors is reviewed, highlighting efforts dedicated to improving the transducer configuration and integration. Additionally, </span>surface functionalization methods for different materials to produce reproducible surface properties and different detection methods for biological targets are introduced for evaluation. 2D PC refractometric biosensors have been applied to a great many applications varying from biotechnology, food safety, water quality monitoring to clinical diagnosis. Finally, the authors’ views on current limitations of the slab for biosensing as well as the optimizable aspects are presented.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"77 ","pages":"Article 100298"},"PeriodicalIF":11.7,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2020.100298","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2363135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"III-nitride semiconductor lasers grown on Si","authors":"Meixin Feng , Jianxun Liu , Qian Sun , Hui Yang","doi":"10.1016/j.pquantelec.2021.100323","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2021.100323","url":null,"abstract":"<div><p><span>III-nitride semiconductor laser<span> directly grown on Si is a potential on-chip light source for Si photonics. Moreover, it may greatly lower the manufacture cost of laser diodes and further expand their applications. Therefore, III-nitride lasers grown on Si have been pursued for about two decades. Different from GaN </span></span>homoepitaxy<span><span> on free-standing GaN substrates, III-nitride semiconductors grown on Si substrates are usually rich with strain and threading dislocations due to the large mismatch in both lattice constant and coefficient of thermal expansion between GaN and Si substrates, which hindered the realization of electrically injected lasing. The key challenges in the direct growth of high-quality III-nitride semiconductor laser materials on Si substrates, as well as their corresponding solutions, are discussed in detail. Afterwards, a comprehensive review is presented on the recent progress of III-nitride semiconductor lasers grown on Si, including Fabry-Pérot </span>cavity lasers<span>, microdisk lasers, and the lasers with nanostructures, as well as the monolithic integration of lasers on Si. Finally, the further development of III-nitride semiconductor lasers grown on Si is also discussed, including the material quality improvement and novel device structures for enhancing optical confinement and reducing electrical resistance, with a great prospect for better performance and reliability.</span></span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"77 ","pages":"Article 100323"},"PeriodicalIF":11.7,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2021.100323","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3078179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel J. Ironside , Alec M. Skipper , Ashlee M. García, Seth R. Bank
{"title":"Review of lateral epitaxial overgrowth of buried dielectric structures for electronics and photonics","authors":"Daniel J. Ironside , Alec M. Skipper , Ashlee M. García, Seth R. Bank","doi":"10.1016/j.pquantelec.2021.100316","DOIUrl":"https://doi.org/10.1016/j.pquantelec.2021.100316","url":null,"abstract":"<div><p><span>Integration of embedded dielectric<span><span><span> structures with crystalline III-V materials has generated significant interest, due to a host of important applications and material improvements that are central to high performance optoelectronic devices. The core challenge is the production of high-quality crystalline layers grown above embedded dielectric materials, requiring the growth processes of both lateral epitaxial overgrowth (LEO) and coalescence. In this review article, we provide a detailed and up-to-date description of the recent advances in both LEO and coalescence in III-V materials, from its extension to </span>molecular beam </span>epitaxial growth and high-quality coalescence in InP and GaAs to emerging applications that utilize encapsulated air voids to enhance </span></span>optical devices. We also explore the epitaxial integration of other materials, particularly metals, with III-V semiconductors.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"77 ","pages":"Article 100316"},"PeriodicalIF":11.7,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2021.100316","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2263824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}