Photon-by-photon quantum light state engineering

IF 7.4 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Nicola Biagi, Saverio Francesconi, Alessandro Zavatta, Marco Bellini
{"title":"Photon-by-photon quantum light state engineering","authors":"Nicola Biagi,&nbsp;Saverio Francesconi,&nbsp;Alessandro Zavatta,&nbsp;Marco Bellini","doi":"10.1016/j.pquantelec.2022.100414","DOIUrl":null,"url":null,"abstract":"<div><p>The ability to manipulate light at the level of single photons, its elementary excitation quanta, has recently made it possible to produce a rich variety of tailor-made quantum states and arbitrary quantum operations, of high interest for fundamental science and applications. Here we present a concise review of the progress made over the last few decades in the engineering of quantum light states. Although far from exhaustive, this review aims at providing a sufficiently wide and updated introduction that may serve as the entry point to such a fascinating and rapidly evolving field.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672722000398","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

Abstract

The ability to manipulate light at the level of single photons, its elementary excitation quanta, has recently made it possible to produce a rich variety of tailor-made quantum states and arbitrary quantum operations, of high interest for fundamental science and applications. Here we present a concise review of the progress made over the last few decades in the engineering of quantum light states. Although far from exhaustive, this review aims at providing a sufficiently wide and updated introduction that may serve as the entry point to such a fascinating and rapidly evolving field.

光子对光子量子光态工程
在单光子水平上操纵光的能力,它的基本激发量子,最近使得产生丰富多样的定制量子态和任意量子操作成为可能,这对基础科学和应用具有很高的兴趣。在这里,我们简要回顾了过去几十年来在量子光态工程方面取得的进展。虽然远非详尽无遗,但本综述的目的是提供一个足够广泛和最新的介绍,可以作为这样一个迷人和快速发展的领域的切入点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Quantum Electronics
Progress in Quantum Electronics 工程技术-工程:电子与电气
CiteScore
18.50
自引率
0.00%
发文量
23
审稿时长
150 days
期刊介绍: Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信