Epijournal de Geometrie Algebrique最新文献

筛选
英文 中文
CARTAN GEOMETRIES ON COMPLEX MANIFOLDS OF ALGEBRAIC DIMENSION ZERO 代数维数为零的复流形上的卡坦几何
IF 0.8
Epijournal de Geometrie Algebrique Pub Date : 2018-04-24 DOI: 10.46298/epiga.2019.volume3.4460
I. Biswas, Sorin Dumitrescu, B. McKay
{"title":"CARTAN GEOMETRIES ON COMPLEX MANIFOLDS OF ALGEBRAIC DIMENSION ZERO","authors":"I. Biswas, Sorin Dumitrescu, B. McKay","doi":"10.46298/epiga.2019.volume3.4460","DOIUrl":"https://doi.org/10.46298/epiga.2019.volume3.4460","url":null,"abstract":"International audience\u0000 \u0000 We show that compact complex manifolds of algebraic dimension zero bearing a holomorphic Cartan geometry of algebraic type have infinite fundamental group. This generalizes the main Theorem in [DM] where the same result was proved for the special cases of holomorphic affine connections and holomorphic conformal structures.\u0000 \u0000 \u0000 Nous montrons que toute variété complexe compacte de dimension algébrique nulle possédant une géométrie de Cartan holomorphe de type algébrique doit avoir un groupe fondamental infini. Il s’agit d’une généralisation du théorème principal de [DM] où le même résultat était montré dans le cas particulier des connexions affines holomorphes et des structures conformes holomorphes.\u0000","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70482685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The spectral gluing theorem revisited 再来看看谱胶合定理
IF 0.8
Epijournal de Geometrie Algebrique Pub Date : 2018-04-13 DOI: 10.46298/epiga.2020.volume4.5940
Dario Beraldo
{"title":"The spectral gluing theorem revisited","authors":"Dario Beraldo","doi":"10.46298/epiga.2020.volume4.5940","DOIUrl":"https://doi.org/10.46298/epiga.2020.volume4.5940","url":null,"abstract":"We strengthen the gluing theorem occurring on the spectral side of the\u0000geometric Langlands conjecture. While the latter embeds $IndCoh_N(LS_G)$ into a\u0000category glued out of 'Fourier coefficients' parametrized by standard\u0000parabolics, our refinement explicitly identifies the essential image of such\u0000embedding.\u0000","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2018-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47726850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Explicit equations of the Cartwright-Steger surface Cartwright-Steger曲面的显式方程
IF 0.8
Epijournal de Geometrie Algebrique Pub Date : 2018-04-02 DOI: 10.46298/epiga.2020.volume4.5662
L. Borisov, Sai-Kee Yeung
{"title":"Explicit equations of the Cartwright-Steger surface","authors":"L. Borisov, Sai-Kee Yeung","doi":"10.46298/epiga.2020.volume4.5662","DOIUrl":"https://doi.org/10.46298/epiga.2020.volume4.5662","url":null,"abstract":"We construct explicit equations of Cartwright-Steger and related surfaces.\u0000\u0000 Comment: 16 pages, LaTeX","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2018-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48502364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Smooth affine group schemes over the dual numbers 对偶数上的光滑仿射群格式
IF 0.8
Epijournal de Geometrie Algebrique Pub Date : 2018-02-20 DOI: 10.46298/epiga.2019.volume3.4792
M. Romagny, D. Tossici
{"title":"Smooth affine group schemes over the dual numbers","authors":"M. Romagny, D. Tossici","doi":"10.46298/epiga.2019.volume3.4792","DOIUrl":"https://doi.org/10.46298/epiga.2019.volume3.4792","url":null,"abstract":"International audience\u0000 We provide an equivalence between the category of affine, smooth group schemes over the ring of generalized dual numbers $k[I]$, and the category of extensions of the form $1 to text{Lie}(G, I) to E to G to 1$ where G is an affine, smooth group scheme over k. Here k is an arbitrary commutative ring and $k[I] = k oplus I$ with $I^2 = 0$. The equivalence is given by Weil restriction, and we provide a quasi-inverse which we call Weil extension. It is compatible with the exact structures and the $mathbb{O}_k$-module stack structures on both categories. Our constructions rely on the use of the group algebra scheme of an affine group scheme; we introduce this object and establish its main properties. As an application, we establish a Dieudonné classification for smooth, commutative, unipotent group schemes over $k[I]$.\u0000 Nous construisons une équivalence entre la catégorie des schémas en groupes affines et lisses sur l'anneau des nombres duaux généralisés k[I], et la catégorie des extensions de la forme 1 → Lie(G, I) → E → G → 1 où G est un schéma en groupes affine, lisse sur k. Ici k est un anneau commutatif arbitraire et k[I] = k ⊕ I avec I 2 = 0. L'équivalence est donnée par la restriction de Weil, et nous construisons un foncteur quasi-inverse explicite que nous appelons extension de Weil. Ces foncteurs sont compatibles avec les structures exactes et avec les structures de champs en O k-modules des deux catégories. Nos constructions s'appuient sur le schéma en algèbres de groupe d'un schéma en groupes affines, que nous introduisons et dont nous donnons les propriétés principales. En application, nous donnons une classification de Dieudonné pour les schémas en groupes commutatifs, lisses, unipotents sur k[I] lorsque k est un corps parfait.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2018-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70483239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sur l'hyperbolicit'e de graphes associ'es au groupe de Cremona 论与克雷莫纳群相关的图的双曲性
IF 0.8
Epijournal de Geometrie Algebrique Pub Date : 2018-02-08 DOI: 10.46298/epiga.2019.volume3.4895
Anne Lonjou
{"title":"Sur l'hyperbolicit'e de graphes associ'es au groupe de Cremona","authors":"Anne Lonjou","doi":"10.46298/epiga.2019.volume3.4895","DOIUrl":"https://doi.org/10.46298/epiga.2019.volume3.4895","url":null,"abstract":"To reinforce the analogy between the mapping class group and the Cremona\u0000group of rank $2$ over an algebraic closed field, we look for a graph\u0000analoguous to the curve graph and such that the Cremona group acts on it\u0000non-trivially. A candidate is a graph introduced by D. Wright. However, we\u0000demonstrate that it is not Gromov-hyperbolic. This answers a question of A.\u0000Minasyan and D. Osin. Then, we construct two graphs associated to a Vorono\"i\u0000tesselation of the Cremona group introduced in a previous work of the autor. We\u0000show that one is quasi-isometric to the Wright graph. We prove that the second\u0000one is Gromov-hyperbolic.\u0000\u0000 Comment: 29 pages, en Franc{c}ais","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2018-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70483421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Limits of the trivial bundle on a curve 曲线上平凡束的极限
IF 0.8
Epijournal de Geometrie Algebrique Pub Date : 2017-12-20 DOI: 10.46298/epiga.2018.volume2.4454
A. Beauville
{"title":"Limits of the trivial bundle on a curve","authors":"A. Beauville","doi":"10.46298/epiga.2018.volume2.4454","DOIUrl":"https://doi.org/10.46298/epiga.2018.volume2.4454","url":null,"abstract":"We attempt to describe the rank 2 vector bundles on a curve C which are\u0000specializations of the trivial bundle. We get a complete classifications when C\u0000is Brill-Noether generic, or when it is hyperelliptic; in both cases all limit\u0000vector bundles are decomposable. We give examples of indecomposable limit\u0000bundles for some special curves.\u0000\u0000 Comment: Final version, published in Epiga","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2017-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70483102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the group of zero-cycles of holomorphic symplectic varieties 关于全纯辛变的零环群
IF 0.8
Epijournal de Geometrie Algebrique Pub Date : 2017-11-27 DOI: 10.46298/epiga.2020.volume4.5506
A. Marian, Xiaolei Zhao
{"title":"On the group of zero-cycles of holomorphic symplectic varieties","authors":"A. Marian, Xiaolei Zhao","doi":"10.46298/epiga.2020.volume4.5506","DOIUrl":"https://doi.org/10.46298/epiga.2020.volume4.5506","url":null,"abstract":"For a moduli space of Bridgeland-stable objects on a K3 surface, we show that\u0000the Chow class of a point is determined by the Chern class of the corresponding\u0000object on the surface. This establishes a conjecture of Junliang Shen, Qizheng\u0000Yin, and the second author.\u0000","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2017-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47642085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Prime Fano threefolds of genus 12 with a $G_m$-action 素数法诺,属12的三倍,具有$G_m$-动作
IF 0.8
Epijournal de Geometrie Algebrique Pub Date : 2017-11-22 DOI: 10.46298/epiga.2018.volume2.4179
A. Kuznetsov, Yuri Prokhorov
{"title":"Prime Fano threefolds of genus 12 with a $G_m$-action","authors":"A. Kuznetsov, Yuri Prokhorov","doi":"10.46298/epiga.2018.volume2.4179","DOIUrl":"https://doi.org/10.46298/epiga.2018.volume2.4179","url":null,"abstract":"We give an explicit construction of prime Fano threefolds of genus 12 with a\u0000$G_m$-action, describe their isomorphism classes and automorphism groups.\u0000\u0000 Comment: 14 pages, LaTeX, updated version, to appear in 'Epijournal de\u0000 G'eom'etrie Alg'ebrique, Vol. 2 (2018), Article Nr. 3","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2017-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70482506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Lefschetz (1,1)-theorem in tropical geometry 热带几何中的Lefschetz(1,1)定理
IF 0.8
Epijournal de Geometrie Algebrique Pub Date : 2017-11-21 DOI: 10.46298/epiga.2018.volume2.4126
Philipp Jell, Johannes Rau, Kristin M. Shaw
{"title":"Lefschetz (1,1)-theorem in tropical geometry","authors":"Philipp Jell, Johannes Rau, Kristin M. Shaw","doi":"10.46298/epiga.2018.volume2.4126","DOIUrl":"https://doi.org/10.46298/epiga.2018.volume2.4126","url":null,"abstract":"For a tropical manifold of dimension n we show that the tropical homology\u0000classes of degree (n-1, n-1) which arise as fundamental classes of tropical\u0000cycles are precisely those in the kernel of the eigenwave map. To prove this we\u0000establish a tropical version of the Lefschetz (1, 1)-theorem for rational\u0000polyhedral spaces that relates tropical line bundles to the kernel of the wave\u0000homomorphism on cohomology. Our result for tropical manifolds then follows by\u0000combining this with Poincar'e duality for integral tropical homology.\u0000\u0000 Comment: 27 pages, 6 figures, published version","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2017-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70482420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
A characterization of finite vector bundles on Gauduchon astheno-Kahler manifolds gaduchon astheno-Kahler流形上有限向量束的表征
IF 0.8
Epijournal de Geometrie Algebrique Pub Date : 2017-11-01 DOI: 10.46298/epiga.2018.volume2.4209
I. Biswas, Vamsi Pingali
{"title":"A characterization of finite vector bundles on Gauduchon astheno-Kahler\u0000 manifolds","authors":"I. Biswas, Vamsi Pingali","doi":"10.46298/epiga.2018.volume2.4209","DOIUrl":"https://doi.org/10.46298/epiga.2018.volume2.4209","url":null,"abstract":"A vector bundle E on a projective variety X is called finite if it satisfies\u0000a nontrivial polynomial equation with integral coefficients. A theorem of Nori\u0000implies that E is finite if and only if the pullback of E to some finite etale\u0000Galois covering of X is trivial. We prove the same statement when X is a\u0000compact complex manifold admitting a Gauduchon astheno-Kahler metric.\u0000","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70483021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信