Sur l'hyperbolicit\'e de graphes associ\'es au groupe de Cremona

Pub Date : 2018-02-08 DOI:10.46298/epiga.2019.volume3.4895
Anne Lonjou
{"title":"Sur l'hyperbolicit\\'e de graphes associ\\'es au groupe de Cremona","authors":"Anne Lonjou","doi":"10.46298/epiga.2019.volume3.4895","DOIUrl":null,"url":null,"abstract":"To reinforce the analogy between the mapping class group and the Cremona\ngroup of rank $2$ over an algebraic closed field, we look for a graph\nanaloguous to the curve graph and such that the Cremona group acts on it\nnon-trivially. A candidate is a graph introduced by D. Wright. However, we\ndemonstrate that it is not Gromov-hyperbolic. This answers a question of A.\nMinasyan and D. Osin. Then, we construct two graphs associated to a Vorono\\\"i\ntesselation of the Cremona group introduced in a previous work of the autor. We\nshow that one is quasi-isometric to the Wright graph. We prove that the second\none is Gromov-hyperbolic.\n\n Comment: 29 pages, en Fran\\c{c}ais","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2019.volume3.4895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To reinforce the analogy between the mapping class group and the Cremona group of rank $2$ over an algebraic closed field, we look for a graph analoguous to the curve graph and such that the Cremona group acts on it non-trivially. A candidate is a graph introduced by D. Wright. However, we demonstrate that it is not Gromov-hyperbolic. This answers a question of A. Minasyan and D. Osin. Then, we construct two graphs associated to a Vorono\"i tesselation of the Cremona group introduced in a previous work of the autor. We show that one is quasi-isometric to the Wright graph. We prove that the second one is Gromov-hyperbolic. Comment: 29 pages, en Fran\c{c}ais
分享
查看原文
论与克雷莫纳群相关的图的双曲性
为了加强映射类群与代数闭域上秩$2$的cremonaggroup之间的相似性,我们寻找与曲线图相似的图形,并且使得Cremona群对其起非平凡的作用。一个候选图是D. Wright介绍的。然而,我们证明了它不是格罗莫夫双曲。这回答了a . minasyan和D. Osin的一个问题。然后,我们构造了两个图,这些图与作者在之前的工作中介绍的Cremona群的Vorono本身关联。我们证明它是莱特图的准等距。我们证明了第二步是格罗莫夫双曲的。评论:29页,en Fran\c{c}ais
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信